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Quantum Computation as Geometry
Michael A. Nielsen,* Mark R. Dowling, Mile Gu, Andrew C. Doherty

Quantum computers hold great promise for solving interesting computational problems, but it
remains a challenge to find efficient quantum circuits that can perform these complicated tasks.
Here we show that finding optimal quantum circuits is essentially equivalent to finding the shortest
path between two points in a certain curved geometry. By recasting the problem of finding
quantum circuits as a geometric problem, we open up the possibility of using the mathematical
techniques of Riemannian geometry to suggest new quantum algorithms or to prove limitations
on the power of quantum computers.

Quantum computers have the potential to
solve efficiently some problems that are
considered intractable on conventional

classical computers: The most famous example
is Shor_s algorithm (1) for finding the prime
factors of an integer. Despite this great promise,
as yet there is no general method for construct-
ing good quantum algorithms, and very little is
known about the potential power (or limita-
tions) of quantum computers.

A quantum computation is usually described as
a sequence of logical gates, each coupling only a
small number of qubits. The sequence of gates
determines a unitary evolution U performed
by the computer. The difficulty of performing
the computation is characterized by the num-
ber of gates used by the algorithm, which is
said to be efficient if the number of gates
required grows only polynomially with the size
of problem (e.g., with the number of digits in
the number to be factored, in the case of Shor_s
factoring algorithm).

We developed an alternate approach to
understanding the difficulty of implementing
a unitary operation U. Suppose that U is
generated by some time-dependent Hamil-
tonian H(t) according to the SchrPdinger
equation dU/dt 0 jiHU, where i is

ffiffiffiffiffiffiffi
j1

p

and with the requirement that at an appropri-
ate final time tf , U(tf) 0 U. We characterized
the difficulty of the computation by imposing
a cost FEH(t)^ on the Hamiltonian control,
H(t). Following (2), we chose a cost function
on H(t) that defines a Riemannian geometry
on the space of unitary operations. Finding
the optimal control function H(t) for synthe-
sizing a desired unitary U then corresponds to
finding minimal geodesics of the Riemannian
geometry.

We show here that the minimal geodesic
distance between the identity operation I and U
is essentially equivalent to the number of gates
required to synthesize U. This result extends the
work in (2), where it was shown that the mini-
mal distance provides a lower bound on the
number of gates required to synthesize U.

Our result allows the tools of Riemannian
geometry to be applied to understand quantum
computation. In particular, we can use a powerful
tool—the calculus of variations—to find the
geodesics of the space. Just as in general relativity,
this calculus can be used to derive the geodesic
equation, a Bforce law[ whereby the local shape
of space tells us how to move in order to fol-
low the geodesics of the manifold.

Intuitively, our results show that the optimal
way of solving any computational problem is to
Bfall freely[ along the minimal geodesic curve
connecting the identity operation to the desired
operation, with the motion determined entirely by

the local Bshape[ of the space. To appreciate this
result, consider that once an initial position and
velocity are set, the remainder of the geodesic is
completely determined by the geodesic equation.
This is in contrast with the usual case in circuit
design, either classical or quantum, where being
given part of an optimal circuit does not ob-
viously assist in the design of the rest of the
circuit. Geodesic analysis thus offers a po-
tentially powerful approach to the analysis of
quantum computation. However, a caveat to
this optimism is that although we know the
initial position is the identity operation, we
still need to determine the initial velocity in
order to find the minimal geodesic; this is not,
in general, an easy problem.

Our results can also be viewed as showing
that the problem of finding minimal quantum
circuits is equivalent to a problem in geometric
control theory (3), which has had great suc-
cess in using techniques from the calculus of
variations and Riemannian geometry to solve
optimal control problems. For example, Khaneja
and co-workers (4) and others (5, 6) have used
geometric techniques to analyze the minimal
time cost of synthesizing two-qubit unitary opera-
tions using a fixed, two-qubit control Hamiltonian
and fast local control.

School of Physical Sciences, The University of Queensland,
Queensland 4072, Australia.

*To whom correspondence should be addressed. E-mail:
nielsen@physics.uq.edu.au

Fig. 1. Schematic of the three steps used to construct a quantum circuit approximating the unitary
operation U. The circuit is of a size that is polynomial in the distance d(I, U) between the identity
and U. First, we projected the Hamiltonian H(t) for the minimal geodesic path onto one- and two-
qubit terms, giving HP(t). By choosing the penalty p large enough (p 0 4n), we ensured the error in
this approximation is small, e1 e d(I, U)/2n. Next, we broke up the evolution according to HP(t) into
N small time steps of size D 0 d(I, U)/N, and we approximated with a constant mean Hamiltonian
HD
P over each step. Finally, we approximated evolution according to the constant mean Hamiltonian

over each step by a sequence of one- and two-qubit quantum gates. The total errors, e2 and e3,
introduced by these approximations can be made smaller than any desired constant by choosing
the step size D sufficiently small: D 0 O(1/[n2d(I, U)]). In total, we need O(n6d(I, U)3) quantum gates
to approximate U to within some constant error, which can be made arbitrarily small.
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To choose a cost function on the control
HamiltonianH(t), we first write H(t) in terms of

the Pauli operator expansion H 0
P
s

¶
hss þ

P
s

¶¶
hss, assuming the following: (i) In the

first sum, s ranges over all possible one- and
two-body interactions, that is, over all products
of either one or two Pauli matrices acting on n
qubits. (ii) In the second sum, s ranges over all
other tensor products of Pauli matrices and the
identity. (iii) The hs are real coefficients. We
then define a measure of the cost of applying a
particular Hamiltonian during synthesis of a
desired unitary operation

FðHÞ 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

s

¶
h2s þ p2

X

s

¶¶
h2s

s
ð1Þ

The parameter p is a penalty paid for apply-
ing three- and more-body terms; later we will
choose p to be large in order to suppress such
terms (7).

This definition of control cost leads us to a
natural notion of distance in the space SU(2

n
)

of n-qubit unitary operators with unit determi-
nant. A curve EU ^ between the identity
operation I and the desired operation U is a
smooth function U: E0, tf^ Y SU(2

n
), such that

U(0) 0 I and U(tf) 0 U. The length of this curve
can then be defined by the total cost of
synthesizing the Hamiltonian that generates evo-
lution along the curve

dðEU ^Þ K X
tf

0

dtFEHðtÞ^ ð2Þ

Because d(EU^) is invariant with respect to
different parameterizations of EU ^ (8), we can
always rescale the Hamiltonian H(t) such that
FEH(t)^ 0 1 and the desired unitary U is gen-
erated at time tf 0 d(EU ^). From now on, we
assume that we are working with such normal-
ized curves. Finally, the distance d(I, U) between
I and U is defined to be the minimum of d(EU ^)
over all curves EU ^ connecting I and U.

We will show that for any family of unitariesU
(implicitly, U is indexed by the number of qubits
n), there is a quantum circuit containing a number
of gates that is polynomial in d(I, U) and that ap-
proximates U to high accuracy. In other words, if
the distance d(I, U) scales polynomially with n for
some family of unitary operations, then it is pos-
sible to find a polynomial-sized quantum circuit for
that family of unitary operations. Conversely, the
metric we construct also has the property, proved
in (2), that up to a constant factor, the distance
d(I, U) is a lower bound on the number of one-
and two-qubit quantum gates required to exactly
synthesize U. Consequently, the distance d(I, U)
is a good measure of the difficulty of implement-
ing the operation U on a quantum computer.

The function F(H) specified by eq. 1 can be
thought of as the norm associated to a (right

invariant) Riemannian metric whose metric
tensor g has components:

gst 0

0 if s m t

1 if s 0 t and s is one- or two-body

p2 if s 0 t and s is three- or more-body

8
>>>><

>>>>:

ð3Þ

These components are written with respect to a
basis for the local tangent space corresponding
to the Pauli expansion coefficients hs. The
distance d(I, U) is equal to the minimal length
solution to the geodesic equation, which may
be written (9) as bdH/dt, KÀ 0 ibH, EH, K ^À. In
this expression, the notation bx, yÀ indicates
the inner product of x and y on the tangent
space su(2

n
) defined by the metric components

of eq. 3, the notation EH, K^ indicates the matrix
commutator, and K is an arbitrary operator. For
our particular choice of metric components, this
geodesic equation may be rewritten as

p2sḣs 0 i
X

t

p2thth̃Es;t^ ð4Þ

where h̃Es;t^ 0 trðHEs; t^Þ=2n and tr indicates
the trace. A particular class of solutions to this
equation was studied in (2), but understand-
ing the general behavior of the geodesics re-
mains a problem for future research (10). There
are powerful tools in Riemannian geometry
(11, 12) available for the study of minimal length
geodesics.

Our goal is to use the optimal control Ham-
iltonian H(t) to construct explicitly a quantum
circuit containing a number of gates that is
polynomial in d(I, U) and which approximates
U closely. The construction combines three
main ideas, which we express through three
separate lemmas, before combining them to
obtain the result (Fig. 1).

The first lemma shows that the error that arises
by simply ignoring the many-body interactions in
H(t) can be made small by choosing the penalty p
appropriately. We define HP to be the projected
Hamiltonian formed by deleting all three- and
more-body terms in the Pauli expansion. The
following result is proved in (13).

Lemma 1: Let HP(t) be the projected Hamil-
tonian obtained from a Hamiltonian H(t) gen-
erating a unitary U. Let UP be the corresponding
unitary generated by HP(t). Then

¬U jUP¬ e
2
n
dðEU ^Þ
p

ð5Þ

where ¬x¬ is the operator norm of x (14) and p is
the penalty parameter appearing in the defini-
tion of the metric. Thus, by choosing p suf-
ficiently large, say p 0 4

n
, we can ensure that

¬U j UP¬ e d(EU^)/2n.

Motivated by the preceding lemma, we
change our aim from accurately synthesizing U
to accurately synthesizing UP. To do this, we
break the evolution according to HP(t) up into
many small intervals, each of length D. The
next lemma shows that evolution according to
the time-dependent Hamiltonian HP(t) over
such a small time interval can always be ac-
curately simulated by a constant mean Hamil-
tonian, which we denote H

D
P .

Lemma 2: LetU be an n-qubit unitary gener-
ated by applying a time-dependent Hamiltonian
H(t) satisfying ¬H(t)¬ e c, for some constant c,
over a time interval E0, D^. Then defining the
mean Hamiltonian H K 1

D X
D
0 dtHðtÞ we have

¬UjexpðjiHDÞ¬ e 2ðecDj1jcDÞ0Oðc2D2Þ
ð6Þ

where O(x) indicates the asymptotic behavior
of the function. The proof of this lemma is
based on the Dyson operator expansion and is
presented in (13). To apply this lemma to
HP(t), note that elementary norm inequalities
and the observation FEHP(t)^ e 1 imply that
¬HPðtÞ¬ e ð3=

ffiffiffi
2

p
ÞnFEHPðtÞ^ e ð3=

ffiffiffi
2

p
Þn (15).

Lemma 2 implies that over a time interval D,
we have

¬UD
P j expðjiH

D
PDÞ¬ e

2 e3=
ffiffi
2

p
nD j ð1þ 3ffiffiffi

2
p nDÞ

" #
0Oðn2D2Þ ð7Þ

where UP
D is the evolution generated by HP(t)

over the time interval D, and H
D
P is the cor-

responding mean Hamiltonian.
Our third and final lemma shows that

evolution according to a time-independent
Hamiltonian H containing only one- and two-
body terms can be very accurately simulated by
using a number of quantum gates that is not too
large.

Lemma 3: Suppose H is an n-qubit two-
body Hamiltonian whose Pauli expansion
coefficients satisfy khsk e 1. Then there exists
a unitary UA, satisfying

¬ejiHD jUA¬ e c2n
4D3 ð8Þ

that can be synthesized using at most c1n
2/D

one- and two-qubit gates, where c1 and c2 are
constants.

This result follows from standard procedures
for simulating quantum evolutions using quan-
tum gates E(16) chap. 4^, and it is proved in
(13). The average Hamiltonian H

D
P provided by

lemma 2 satisfies the assumptions of lemma 3,
because the Pauli expansion coefficients of
HP(t) satisfy khsk e 1 for all times.

To integrate lemmas 1 to 3, suppose H(t) is
the time-dependent normalized Hamiltonian gen-
erating the minimal geodesic of length d(I, U ).
Let HP(t) be the corresponding projected

REPORTS
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Hamiltonian, which generates UP and satisfies
¬Uj UP¬ e d(I, U)/2

n
, as guaranteed by lemma

1, and where we have chosen p 0 4
n
as the

penalty. Now divide the time interval E0, d(I, U)^
up into a large number N of time intervals each
of length D 0 d(I, U)/N. Let U

P

j
be the unitary

operation generated by HP(t) over the jth time
interval, where j is an integer. Let U

M
j be the

unitary operation generated by the corresponding
mean Hamiltonian. Then lemma 2 implies that:

¬U j
P jU

j
M¬ e 2Ee3

ffiffi
2

p
nD j ð1þ 3ffiffiffi

2
p nDÞ^ ð9Þ

Lemma 3 implies that we can synthesize a uni-
tary operation U

A

j
using at most c1n

2/D one-
and two-qubit gates and satisfying ¬U

j

M j
U

j
A¬ e c2n

4D3.
Putting all these results together and applying

the triangle inequality repeatedly, we obtain

¬U jUA¬ e ¬U jUP¬þ ¬UP jUA¬ ð10Þ

e
dðI ;UÞ

2n
þ
XN

j01

¬Uj
P jU

j
A¬ ð11Þ

e
dðI ;UÞ

2n
þ

XN

j01

¬Uj
P jU

j
M¬þ ¬Uj

M jU
j
A¬

$ %

ð12Þ

e
dðI ;UÞ

2n
þ 2

dðI ;UÞ
D

$ eð3=
ffiffi
2

p
ÞnD j 1þ 3ffiffiffi

2
p nD

& '" #
þ

c2dðI ;UÞn4D2

ð13Þ

Provided we choose D to scale at most as
1/En2d(I, U)^, we can ensure that the error in
our approximation UA to U is small, and the
number of gates scales as n6d(I, U)3.

Summing up, we have the following theorem
(17): Using O(n6d(I, U)3) one- and two-qubit
gates, it is possible to synthesize a unitary UA

satisfying ¬U j UA¬ e c, where c is any con-
stant (e.g., c 0 1=10).

Our results demonstrate that, up to polyno-
mial factors, the optimal way of generating a
unitary operation is to move along the minimal
geodesic curve connecting I and U. Because the
length of such geodesics also provides a lower
bound on the minimal number of quantum
gates required to generate U, as shown in (2),
the geometric formulation offers an alternate
approach, which may suggest efficient quantum
algorithms or provide a way of proving that a
given algorithm is indeed optimal.

It would, of course, be desirable to completely
classify the geodesics of themetric we constructed.
An infinite class of such geodesics has been con-
structed in (2) and is shown to have an intriguing
connection to the problem of finding the closest
vector in a lattice. A more complete classification
of the geodesics could provide major insight on
the potential power of quantum computation.
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Effects of Solar Flares on
the Ionosphere of Mars
Michael Mendillo,1 Paul Withers,1* David Hinson,2 Henry Rishbeth,1,3 Bodo Reinisch4

All planetary atmospheres respond to the enhanced x-rays and ultraviolet (UV) light emitted from
the Sun during a flare. Yet only on Earth are observations so continuous that the consequences of
these essentially unpredictable events can be measured reliably. Here, we report observations of
solar flares, causing up to 200% enhancements to the ionosphere of Mars, as recorded by the Mars
Global Surveyor in April 2001. Modeling the altitude dependence of these effects requires that
relative enhancements in the soft x-ray fluxes far exceed those in the UV.

S
udden changes in the Sun_s photon radi-
ation and in the particles and fields of its
solar wind reach Earth in about 8 min

and a few days, respectively. These enhanced
sources of energy cause sudden atmospheric
disturbances and the auroral displays associated
with longer lived geomagnetic storms. The recent

availability of spacecraft orbiting other planets has
enabled studies of such effects on other worlds. A
mass ejection from the Sun_s corona in early
November 2000 caused auroras on Earth, Jupiter,
and Saturn during its month-long traverse through
the solar system, providing a specific challenge to
models that track solar wind density and magnetic

field enhancements (1). Increased x-ray emis-
sions were observed from Jupiter and Saturn in
November 2003 and January 2004, respectively,
shortly after solar flares, thereby demonstrating
the Sun_s control of nonauroral x-ray emission
from giant planets (2, 3). However, the direct
response of another planetary atmosphere to
solar flare photons, e.g., suddenly enhancing its
ionosphere, has not been seen. Here, we report
such an effect in the ionosphere of Mars.

Ions and electrons in a planet_s ionosphere
are produced by the photoionization of neutral

1Center for Space Physics, Boston University, Boston, MA
02215, USA. 2Department of Electrical Engineering,
Stanford University, Stanford, CA 94305, USA. 3School of
Physics and Astronomy, University of Southampton,
Southampton SO17 1BJ, UK. 4Center for Atmospheric
Research, University of Massachusetts Lowell, Lowell, MA
01854, USA.

*To whom correspondence should be addressed. E-mail:
withers@bu.edu
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