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Majorization is a powerful, easy-to-use and 
exible tool which arises frequently in quan-

tum mechanics as a consequence of fundamental connections between unitarity and the

majorization relation. Entanglement theory does not escape from its in
uence. Thus

the interconversion of bipartite pure states by means of local manipulations turns out

to be ruled to a great extend by majorization relations. This review both introduces

some elements of majorization theory and describes recent results on bipartite entangle-

ment transformations, with special emphasis being placed on explaining the connections

between these two topics. The latter implies analyzing two other aspects of quantum me-

chanics similarly in
uenced by majorization, namely the problem of mixing of quantum

states and the characterization of quantum measurement.
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1. Introduction

Majorization was developed to answer the following question: what does it mean to

say that one probability distribution is more disordered than another? In the quantum

mechanical context, this question becomes: given two quantum states, what does it mean

to say that one is more disordered than the other? Majorization gives a means for com-

paring two probability distributions or two density matrices in an elegant way. It arises

surprisingly often in �elds such as computer science, economics, and, most important for

us, quantum mechanics. On the other hand, since the early days of quantum theory

entanglement has been one of its highlights, mainly due to its relation to non-locality.

Entanglement is nowadays conceived also as a resource in quantum information theory.

As recent results have shown, majorization relations play a remarkable role in the theory

of quantum entanglement, and this will be the subject of the present review, which has

the following three goals:

� to introduce some of the ideas and results of the theory of majorization;

� to point out the fundamental reasons why connections between majorization and

entanglement theory |or, more generally, quantum mechanics| exist;
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� to describe some applications of majorization in the context of local transformation

of bipartite pure states.

The basic intuition underlying majorization may be understood from the following

de�nition: we say the d-dimensional real vector r is majorized by the d-dimensional real

vector s, written r � s, if there exist a set of d-dimensional permutation matrices Pj and

a probability distribution fpjg such that

r =
X
j

pjPjs: (1)

That is, r is majorized by s precisely when r can be obtained from s by randomly

permuting the components of s, and then averaging over the permutations. At least

naively this appears to be a natural and appealing approach to de�ning the notion that

one vector is more disordered than another. This naive appeal is more than justi�ed by

the rich mathematical structure arising from this de�nition.

As a simple example of majorization, suppose the vector s is a probability distribution

on d outcomes, that is, the components are non-negative and sum to one. Then it is easy

to see that �
1

d
; : : : ;

1

d

�
� s; (2)

since the uniform distribution (1=d; : : : ; 1=d) may be obtained by averaging over permu-

tations P�s of s, where � is chosen uniformly at random from the symmetric group on d

elements. This simple example agrees with our intuition that the uniform distribution on

d elements is at least as disordered as any other probability distribution over d elements.

What connections are there between majorization and quantum mechanics? The quan-

tum mechanical analogue of a probability distribution is the density operator, so a nat-

ural beginning is to de�ne an operator notion of majorization. Letting R and S be d-

dimensional Hermitian operators, we de�ne R � S if �(R) � �(S), where �(R) denotes

the vector whose components are the eigenvalues of R, arranged in decreasing order.

Then, the essential reason for the close connection between majorization and quantum

mechanics may be appreciated by inspection of two elegant (and closely related) results:

Horn's lemma and Uhlmann's theorem. Horn's lemma states that for vectors r and s,

r � s if and only if ri =
P
j juij j2sj for some unitary matrix u = (uij) of complex

numbers. Uhlmann's theorem states, in direct analogy with Eq. (1), that R � S for

Hermitian matrices R and S if and only if there exist unitary matrices Uj and a probability

distribution fpjg such that

R =
X
j

pjUjSU
y
j : (3)

The fundamental role of unitarity in quantum mechanics ensures that relations of the type

found in Horn's lemma and Uhlmann's theorem arise frequently, and it is this fact what

accounts for many of the applications of majorization in quantum mechanics.
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Let us consider which particular mechanism make the above results eventually reach

the domain of entanglement theory. In the context of local manipulation of a bipartite

system AB, our ultimate aim is to be able to answer questions such as: given an entangled

pure state  , can it be transformed into another state � by means of local operations on

the two subsystems A and B aided with classical communication (LOCC for short)? The

feasibility of the transformation  ! � by means of LOCC turns out to depend on whether

a simple majorization relation is satis�ed between the reduced density matrix �A of part

A of the system for states  and �, namely on whether

�
 
A � �

�
A: (4)

To understand the origin of this condition, a close inspection of the allowed manip-

ulation of the bipartite system is required. We will see that any LOCC transformation

involving only pure states can be implemented by means of a single local measurement on

one of the parts of the bipartite system followed by an outcome-dependent unitary oper-

ation on the other part. In addition, local unitary operations are known to be irrelevant

as far as the entanglement properties of the �nal state are concerned. We are therefore

left with a single local measurement as the only element potentially responsible for con-

dition (4). It comes then as natural to investigate the role of majorization in quantum

measurements.

It will be convenient, however, to �rst study the in
uence of majorization in the context

of mixing of quantum states. This, apart from helping us understand certain restrictions

on quantum measurements, will also provide an extra result that can be applied to design

local conversion strategies. Thus, we shall make a small detour and analyze some aspects

of mixing and measurement in quantum mechanics. After that we shall be prepared to

understand why majorization theory, a tool originally developed to study disorder, rules

the interconversion of bipartite pure states under local manipulations of the system.

Despite its indisputable usefulness, one might well ask at the outset why we need the

notion of majorization when measures of disorder such as the Shannon and von Neumann

entropies are already available. Could not these other measures be as useful as majoriza-

tion? This is a good question. It turns out that the entropic measures arise naturally

out of the theory of majorization in a sort of \law of large numbers limit" where a large

number of identical systems are considered. Of course, this also has consequences for en-

tanglement transformations. In the so-called asymptotic regime, where many copies of a

pure state  are transformed into many copies of a pure state �, conversions are possible

if and only if a single inequality for the von Neumann entropy of the reduced density

matrix is obeyed. The essential point will be that measures such as the entropy are essen-

tially weaker than the notion of majorization, and as such do not give as much detailed

information as provided by majorization.

The paper is divided into three more sections. Section presents and describes some

results of majorization theory. This section is purely mathematical in nature, although

all the chosen topics play a role in later applications. Section applies the previous results

to the analysis of mixing of quantum states and to quantum measurement, which in turn
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prepares the path for the contents of section , where the interconversion of bipartite entan-

glement is �nally analyzed. There, we shall discuss the criterion for feasibility of the most

general pure-state transformations of a bipartite system under LOCC, and shall describe

a conversion strategy that requires remarkably little classical communication. The rela-

tion between majorization and entanglement monotones, and majorization in asymptotic

transformations will be also brie
y discussed.

Throughout the paper, specially in the last two sections, we have made historical

remarks to the best of our knowledge; our apologies to any researcher inadvertently omitted

from citation. We have not given citations for some classic results on majorization as

Marshall and Olkin's classic 1979 text1 comprehensely covers the literature well beyond

our competence and available space.

2. Elements of the theory of majorization

In this section we present some results of majorization theory that will be needed later

on. A series of theorems are stated and explained, mainly without proof. Any reader

seriously interested in majorization is recommended Marshall and Olkin's book1, which

contains a wealth of additional material we have not covered, including many applications

of majorization outside physics. Other references on the theory of majorization include

Chapters 2 and 3 of the book by Bhatia2, Ando's3 survey articles on the subject of ma-

jorization, and �nally Alberti and Uhlmann's4 monograph.

2.1. Alternative de�nition

The de�nition for the majorization relation r � s in Eq. (1) in terms of random

permutations is satisfying from an intuitive point of view, and is often useful when proving

theoretical results, but is rather inconvenient for actual calculations. Given two vectors

of numbers r and s, is there some simple procedure to determine whether r � s? Rather

remarkably, such a procedure exists. First, we re-order the components of r and s into

decreasing order, writing for example r# = (r
#
1
; : : : ; r

#
d) for the vector whose components

are the same as those of r, but ordered so that

r
#
1
� r

#
2
� : : : � r

#
d: (5)

It turns out that r � s if and only if

r
#
1

� s
#
1

r
#
1
+ r

#
2

� s
#
1
+ s

#
2

...

r
#
1
+ : : :+ r

#
d�1 � s

#
1
+ : : :+ s

#
d�1

r
#
1
+ : : :+ r

#
d = s

#
1
+ : : :+ s

#
d: (6)

Note that we could have actually taken this calculational de�nition from the very

beginning, and obtain Eq. (1) as a result. However, this set of inequalities is probably less
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suggestive than Eq. (1) as far as the nature of the majorization relation is concerned. In

any case, we will shortly discuss their equivalence.

Any two vectors x and y such that x# = y# are equivalent from the point of view of

majorization. We can thus restrict our considerations to "ordered" real vectors x = x#.

The relation � de�nes a partial order on the set of these vectors. It gives only a partial

rather than a total order, since there are vectors x and y which are incomparable in the

sense that neither x � y nor y � x. An example of this phenomenon is provided by the

vectors x = (0:5; 0:25; 0:25) and (0:4; 0:4; 0:2).

The related notion of super-majorization will also be needed later on. Given any d-

dimensional vector r, let fr"i g denote the elements of r re-ordered into increasing order.

Then r is sub-majorized by s, written r �w s, if
Pk
j=1 r

"
j �

Pk
j=1 s

"
j for each k in the range

1 through d. Notice that the majorization relation can also be rewritten as
Pk
j=1 r

"
j �Pk

j=1 s
"
j , but with the extra constraint

Pd

j=1 r
"
j =

Pd

j=1 s
"
j .

2.2. Majorization and double stochasticity

So far we have introduced two di�erent de�nitions for majorization, one in terms

of a probabilistic sum of permutations, Eq. (1), and a second one in terms of a set

of inequalities, Eqs. (6). The equivalence between these de�nitions follows from two

important theorems we now turn to. These theorems connect in a notorious way the

notion of majorization with doubly stochastic matrices.

A real d by d matrix D = (Dij) is doubly stochastic if the entries of D are non-negative,

and each row and column of D sums to 1. A simple example of a doubly stochastic matrix,

the most general of dimensions 2 by 2, is given by

D =

�
t 1� t

1� t t

�
; (7)

where t is a parameter in the range 0 to 1. As mentioned above, doubly stochastic matrices

are closely related to majorization, as re
ected in the following theorem.

Theorem 1 r � s if and only if r = Ds for some doubly stochastic matrix D.

The set of d by d doubly stochastic matrices is convex. Furthermore, it is easily veri�ed

that the permutation matrices are extreme points of this set, that is, if P is a permutation

matrix, then it is not a convex combination of two distinct doubly stochastic matrices.

Birkho�'s theorem asserts that the permutation matrices exhaust the extremal points of

the set of doubly stochastic matrices, that is, any doubly stochastic matrix can be written

as a convex combination of permutation matrices. In addition, together with Theorem 1

it proves equivalence of the two de�nitions we have introduced.

Theorem 2 (Birkho�'s theorem) The set of d by d doubly stochastic matrices is a

convex set whose extreme points are the permutation matrices.

As a simple example of Birkho�'s theorem we can express any 2 by 2 doubly stochastic

matrix as a convex combination of permutations:�
t 1� t

1� t t

�
= t

�
1 0

0 1

�
+ (1� t)

�
0 1

1 0

�
: (8)



Michael A. Nielsen and Guifr�e Vidal 81

In the general d by d case there are d! di�erent permutation matrices. However, Caratheodory's

theorem5 guarantees that a point in an m-dimensional compact convex set may be ex-

pressed as a convex combination of at most m + 1 extremal points of that set. The d

by d doubly stochastic matrices form a d2 � 2d + 1-dimensional set, so an arbitrary dou-

bly stochastic matrix may be expressed as a convex combination of at most d2 � 2d + 2

permutation matrices.

2.3. Double stochasticity and unitarity

Let us now build the bridge to quantum mechanics. As discussed in the introduction,

Horn's lemma connects unitary matrices and majorization through doubly stochastic ma-

trices. Suppose U = (Uij) is a unitary matrix. Then the matrix Dij � jUij j2 is doubly

stochastic since the rows and columns of U are unit vector; a doubly stochastic matrix

that can be written in this way is called unitary-stochastic.

Theorem 3 (Horn's lemma) r � s if and only if a unitary-stochastic D exists such

that r = Ds.

D is said to be ortho-stochastic if, in addition, U is orthogonal, that is, a real unitary

matrix. Although not all doubly stochastic matrices are unitary-stochastic, the following

theorem shows that, from the point of view of majorization, ortho-stochastic matrices are

actually all we need consider:

Theorem 4 Suppose r � s. Then an ortho-stochastic D exists such that r = Ds.

2.4. Operator majorization

The notion of majorization can be extended to hermitian operators by focussing on

the eigenvalues of the operators R and S to be compared. R � S means, by de�nition,

that �(R) � �(S). Then Uhlmann's theorem, in analogy with Eq. (1) |or, equivalently,

Theorem 1|, states the following.

Theorem 5 (Uhlmann) A � B if and only if there exist unitary matrices Ui and

probabilities pi such that

A =
X
i

piUiBU
y
i : (9)

Uhlmann's theorem clearly illustrates the idea that the hermitian operator A (eventu-

ally, a density matrix) is more random than B, since A can be obtained by independently

applying to B unitary operations fUig, and mixing the resulting operators UiBU
y
i accord-

ing to the probabilities fpig. This transformation is known a unitary mixing.

As an elementary consequence of Horn's lemma we have Ky Fan's maximum principle,

which says that for any Hermitian matrix A, the sum of the k largest eigenvalues of A

is the maximum value of tr(AP ), where the maximum is taken over all k-dimensional

projectors P .
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Theorem 6 (Ky Fan's maximum principle)

kX
j=1

�j(A) = max
P

tr(AP ): (10)

Proof. Choosing P to be the projector onto the space spanned by the k eigenvectors of

A with the k largest eigenvalues results in tr(AP ) =
Pk
j=1 �j(A). We only need to show

that tr(AP ) �
Pk
j=1 �j(A) for any k-dimensional projector P . Let je1i; : : : ; jedi be an

orthonormal basis chosen so that P =
Pk

j=1 jekihekj. Let jf1i; : : : ; jfdi be an orthonormal

set of eigenvectors for A. Then

hej jAjeji =
Pd
k=1 jujkj2�k(A); where ujk � hej jfki is unitary. By Horn's lemma it fol-

lows that (hej jAjeji) � �(A), which implies that tr(AP ) =
Pk
j=1hej jAjeji �

Pk
j=1 �j(A):

2.

Ky Fan's maximum principle implies that for Hermitian matrices A and B,

�(A+B) � �(A) + �(B): (11)

To prove this very useful result, choose a k-dimensional projector P such that
Pk
j=1 �j(A+

B) = tr((A+B)P ) = tr(AP ) + tr(BP ) �
Pk

j=1 �j(A) +
Pk

j=1 �j(B):

2.5. Majorization and entropies

The Shannon entropy H(x) � �
P
i xi log xi of a probability distribution x satis�es

that x � y ) �H(x) < �H(y). This is a particular case of a more general result, which

we state in the following weak form.

Theorem 7 x � y ) F (x) < F (y), where F (x) �
P
i f(xi), for any convex function

f : R! R.

Proof. Suppose x � y and f(�) is a convex function. Then x =
P
i piPiy for some set

of probabilities pi and permutation matrices Pi. F (�) is a sum of convex functions, and

thus convex, so F (x) �
P
i piF (Piy). But F (�) is manifestly permutation invariant, so

F (Piy) = F (y), and thus F (x) �
P
i piF (y) = F (y), as required. 2.

This result can be extended to the domain of operator functionals 6.

Theorem 8 � � � ) F (�) � F (�), where F (�) �
Pd
i=1 f(�i) and �i are the eigen-

values of �, for any convex functions f : R! R.

Proof. Suppose � � � and f(�) is a convex function. Then � =
P
i piUi�U

y
i for

some set of probabilities pi and unitary matrices Ui. F (�) is a sum of convex functions,

and thus convex, so F (�) �
P
i piF (Ui�Uiy). But F (�) is manifestly unitarily invariant,

so F (Ui�Uiy) = F (�), and thus F (�) �
P
i piF (�) = F (�), as required. 2.

In particular it follows that the von Neumann entropy S(�) = H(�(�)) also obeys

� � � ) �S(�) < �S(�). Thus, if one probability distribution or one density operator are
more disordered than another in the sense of majorization, then they are also so according

to the Shannon or the von Neumann entropies, respectively. As the two previous theorems

show, there are as a matter of fact many other functions that also preserve the majorization



Michael A. Nielsen and Guifr�e Vidal 83

relation. Any such function, called Schur-convex, could in a sense be used as a measure

of order. Notice, however, that the majorization relation is a stronger notion of disorder,

giving more information than any Shur-convex function. As it is well known, the reason

why the Shannon and the von Neumann entropies are so important in practice is that

they properly quantify the order in some limiting conditions, namely when many copies

of a system are considered. For the situations in which we are interested in this paper,

majorization and not entropy is the most convenient tool to be used.

3. Characterization of mixing and measurements in quantum mechanics

The connection between majorization and quantum mechanics seems to have �rst been

pointed out by Uhlmann9. Some of Uhlmann's results were later generalized by Wehrl

to the in�nite dimensional case10. In this section we will brie
y describe some of the

known applications of majorization theory in the contexts of quantum state mixing and

of quantum measurements. For a more complete description see Nielsen's paper 11. The

reason for presenting these results here is that they will be very useful in the next section

when discussing bipartite pure state entanglement transformations, since they constitute

the link between entanglement theory and majorization.

3.1. Mixing

The mixing problem in quantum mechanics is the following: given a density matrix

�, characterize the class of probability distributions pj and density matrices �j such that

� =
P
j pj�j . We start presenting a theorem that classi�es all the di�erent ways a given

density matrix may be represented by an ensemble. An ensemble of pure states fpi;  ig is
said to realize the density matrix � if � =

P
i pij iih j.

Theorem 9 (Ensemble classi�cation theorem 12) The ensembles fpi; j iig and

fqi; j�jig realize the same density matrix if and only if

p
pij ii =

X
j

uij
p
qj j�ji (12)

where uij is some unitary matrix and we pad the smaller ensemble with entries having

probability zero to ensure that the two ensembles have the same number of elements.

Combining the ensemble classi�cation theorem with Horn's lemma gives the following

theorem classifying the set of probability distributions consistent with a given density

matrix.

Theorem 10 16
Suppose � is a density matrix. Let pi be a probability distribution.

Then there exist normalized quantum states j ii such that

� =
X
i

pij iih ij (13)

if and only if (pi) � ��, where �� is the vector of eigenvalues of �.
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Proof. Suppose there is a set of states j ii such that � =
P
i pij iih ij. Multiply-

ing (12) by its adjoint gives pi =
P
jk u

�
ikuij�jÆjk, which simpli�es to

pi =
X
j

juij j2�j : (14)

Since Dij � juij j2, we have (pi) = D� for doubly stochastic D, and thus (pi) � �.

Conversely, if (pi) � � then we can �nd orthogonal (and thus unitary) u such that (14) is

satis�ed. De�ning the states j ii by Eq. (12) gives the result. 2.

Later on we will use the following corollary 11: suppose j i is a pure state of a composite

system AB with Schmidt decomposition

j i =
X
i

p
pijiAijiBi: (15)

Then given a probability distribution qi there exists an orthonormal basis ji0Bi for system
B and corresponding states j ii of system A such that

j i =
X
i

p
qij iiji0Bi (16)

if and only if (qi) � (pi).

Finally, the next theorem relates the spectrum of �, �(�), with that of density matrices

�i realizing it.

Theorem 11 Let � be a density matrix, pj a probability distribution, and �j states

such that � =
P
j pj�j. Then the following constraint must be obeyed:

�(�) �
X
j

pj�(�j) (17)

(18)

Proof. It follows immediately from Eq. (11). 2.

3.2. Measurement

In quantum mechanics an eÆcient measurement |one where all information about

outcomes is kept| is characterized by a single set of operators fFig satisfying
P
i F

y
i Fi =

I. It takes, with probability pi � tr F
y
i Fi�, a system originally in state � into the state

�i � (F
y
i �Fi)=pi. Notice that an eÆcient measurement always maps pure states into

pure states. Here, again, we would like to characterize the ensemble fpi; �ig that can be

produced from � through an eÆcient measurement. The next two theorems set restrictions

on the probability vectors �(�), �(�0i) and the probability distribution fpig.
Theorem 12 11;18

Suppose an eÆcient measurement fFig transforms � into �0i with

probability pi. Then the following constraint is obeyed:

�(�) �
X
j

pj�(�
0
i): (19)
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Proof. (Adapted from theorem 2 in 8 applied to the entanglement monotones of 19)

Suppose the measurement fFig is performed on part A of a bipartite system in a pure

state j i such that � = �A �trB j ih j. The resulting states are j ii � Fi 
 IB j i=
p
pi,

with �0i =trB j iih ij. De�ne �B;i � trAj iih ij. Notice that, as expected in order to

prevent faster than light signalling from A to B,

�B = trAj ih j = trA(
X
i

F
y
i Fi 
 IB j ih j) =

X
i

pi�B;i: (20)

But we already known from theorem 11 on mixing that this implies

�(�B) �
X
i

pi�(�B;i); (21)

which is equivalent to Eq. (19) because, for any bipartite pure state, the reduced density

matrices �A and �B have equivalent spectra, that is �(�A) = �(�B). 2.

Intuitively, we know that quantum measurements acquire (rather than lose) infor-

mation about the system being measured. The above theorem just made this intuition

mathematically precise: the eigenvalues of the initial state are more disordered than the

average eigenvalues of the post-measurement state. A type of converse to this result (see

below) also holds: provided an equation similar to (19) is ful�lled |with some additional

technical restrictions|, it is possible to �nd a quantum measurement which gives the post-

measurement state �0i with probability pi when performed with � as the initial state. Thus

majorization provides a natural language to express sharp fundamental constraints on the

ability of quantum measurements to acquire information about a quantum system. Since

the entanglement of a bipartite state is related to how mixed the corresponding reduced

density matrices are, and in order to modify their spectra we need to locally make eÆcient

measurements, we can already start suspecting that the constraints regulating information

acquisition in eÆcient measurements may be exactly the same as the ones ruling bipartite

pure state entanglement manipulation.

Theorem 13 11
Suppose � is a density matrix with vector of eigenvalues �, and �i

are density matrices with vectors of eigenvalues �i. Suppose pi are probabilities such that

� �
X
i

pi�i (22)

Then there exist matrices fEijg and a probability distribution pij such that

X
ij

E
y
ijEij = I; Eij�E

y
ij = pij�i;

X
j

pij = pi: (23)

Proof. By Birkho� theorem, � �
P
i pi�i implies that there exist permutation matri-

ces Pj and probabilities qj such that

� =
X
ij

piqjPj�i: (24)
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Without loss of generality we may assume that � and �i are all diagonal in the same

basis, with non-increasing diagonal entries, since if this is not the case then it is an easy

matter to append unitary matrices to the measurement matrices to obtain the correct

transformation. With this convention, we de�ne matrices Eij by

Eij
p
� � p

piqj
p
�iP

y
j : (25)

For simplicity sake, we will assume that � is invertible. Note that we have

p
�

0
@X

ij

E
y
ijEij

1
Ap

� =
X
ij

piqjPj�iP
y
j : (26)

Comparing with (24) we see that the right-hand side of the last equation is just � and thus

p
�

0
@X

ij

E
y
ijEij

1
Ap

� = �; (27)

from which we deduce that
P
ij E

y
ijEij = I. Furthermore, from the de�nition (25) it

follows that

Eij�E
y
ij = piqj�i; (28)

and thus upon performing a measurement de�ned by the measurement matrices fEijg the
result (i; j) occurs with probability pij = piqj ,

P
j pij = pi, and the post-measurement

state is �i. 2.

4. Interconversion of bipartite states under LOCC

Entanglement transformations have been intensively studied in recent years. This

active area of research has been so far specially successful in the case of transformations

of bipartite systems, where, for instance, it has revealed the structure of entangled pure

states 7;19;20;21;22. It has also led to physically motivated criteria for the quanti�cation

of the entanglement properties of pure 23 and mixed 24 multipartite states. In addition

these studies generate useful tools to address other relevant issues in quantum information

theory, given the predominant role entanglement plays in the whole �eld. A good example

is provided by the bounds on the quantum communication complexity of some distributed

computations derived by estimating the amount of entanglement necessarily produced

while performing the computation 25. In general, any task involving distant parties and

using up entangled states as a resource, such as quantum teleportation, bene�ts from a

better understanding of entanglement.

So far in this paper we have introduced some results of majorization theory and have

applied them both in the context of mixing of quantum states and in that of quantum

measurements. We move now to the main aim of this review, the analysis of entanglement

transformations from the point of view of majorization. First we describe and justify
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the necessary and suÆcient conditions for a pure-state entanglement transformation of a

bipartite system to be feasible under LOCC. Such conditions naturally endow the set of

bipartite pure states with a majorization-based structure. They also lead to uncovering

the surprising e�ect of entanglement catalysis. Then, we will be concerned with explicit

protocols that locally perform a given transformation. In particular, we will describe a

local strategy requiring very little communication between the parts of the system. We

will move to describe the frame set by the theory of entanglement monotones, that applies

to mixed states and to systems with more than two parties. Finally, we will comment on

asymptotic transformations.

4.1. Pure-state transformations under local operations and classical commu-

nication

Consider a composite quantum system consisting of two spatially separated parts, A

and B. Part A is controlled by Alice, who can perform the most general transformation on

it. Similarly, Bob is in charge of part B, that he can manipulate arbitrarily. In addition,

Alice and Bob can talk to each other. Under these circumstances, only a restricted set of

transformations of the system AB are feasible, the so-called LOCC transformations, after

local operations and classical communication. We are then interested in the characteriza-

tion of the states Alice and Bob can take the system into, starting from a given pure state

 and by means of LOCC.

The following theorems provide us with the answer when the �nal states are also pure.

Let �( ) = �(�
 
A) denote the vector of decreasingly ordered eigenvalues �i of the reduced

density matrix �
 
A, or equivalently, of the Schmidt coeÆcients of  ,

j i =
dX
i=1

p
�ijiAijiBi; (29)

a state of two d-level systems. Then the �rst theorem, due to Nielsen 7, refers to a local

deterministic conversion, that is, a local conversion achieving the �nal state with certainty.

It shows that the feasibility of the transformation depends on whether a majorization

relation between the Schmidt coeÆcients of the initial and �nal states is obeyed.

Theorem 14 State  can be converted into state � by means of LOCC if, and only if,

�( ) � �(�): (30)

Notice that since �( ) corresponds to the spectrum of the reduced density matrix

�
 
A �trB j ih j, this condition is equivalent to Eq. (4).

The following generalization of theorem 14, due to Vidal19, considers local conversions

that succeed with some probability p at transforming the initial state into the wished

�nal state. Notice that the necessary and suÆcient condition is given in terms of a super-

majorization relation.

Theorem 15 State  can be conclusively converted into state � with probability p by

means of LOCC if, and only if,

�( ) �w p�(�): (31)
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This result explicitly characterizes then the maximal probability in the conversion of  

to � when the transformation can not be performed with certainty. Such probability had

been previously presented in 26 for the case where the �nal state is maximally entangled.

Finally, the most general transformation involving only pure states, that is, from  

to one element of the ensemble fpj ;  jg, is addressed in this theorem by Jonathan and

Plenio20. Again, the feasibility of the transformation by local means depends on a ma-

jorization relation, this time between the Schmidt coeÆcients of the initial state and an

average of the Schmidt coeÆcients of the �nal states.

Theorem 16 The probabilistic transformation  ! fpj ;  jg can be accomplished using

only LOCC if, and only if

�( ) �
X
j

pj�( j): (32)

It is quite remarkable that the feasibility of a pure-state transformation under LOCC

depends only on a system of d inequalities. Notice that the set of protocols based on

LOCC is of very diÆcult characterization, since a local protocol may consist of arbitrarily

many rounds of communication and local operations. One key result to understand this

simple solution is due to Lo and Popescu26. They exploited the symmetry (up to local

unitary operations) of any bipartite pure state under exchange of parts A and B to show

that the most general LOCC-based protocol involving only pure states can be replaced

with another protocol simply consisting of an eÆcient measurement on any one of the

subsystems, say A, followed by local unitary operations on B.

Let us justify only theorem 16, since theorems 14 and 15 follow as particular cases.

The feasibility by LOCC of a transformation depends, thus, only on whether an eÆcient

measurement on A exists such that transforms the Schmidt coeÆcients �( ) of the initial

state  into those of the �nal states  j (recall that a local unitary operation on B cannot

modify the Schmidt coeÆcients of the �nal states). That is, on whether a measurement

can transform the mixed state �A( ), with spectrum �( ), into the ensemble fpj ; � j

A g,
with corresponding spectra �( j). Then, theorem 12 on quantum measurements implies

that condition (32) must be ful�lled for such a measurement on A to exists, whereas

its partial converse, theorem 13, ensures that when condition (32) is ful�lled, then the

wished measurement exists. Notice, moreover, that the proof of theorem 13 is constructive,

displaying and explicit measurement that we can apply on part A of the system and

supplement with convenient, outcome-dependent unitary operations on part B to readily

obtain a local protocol for the transformation  ! fpj ;  jg.

4.2. Local order, incomparable states and entanglement catalysis.

In a similar way as Uhlmann's theorem justi�es regarding a density operator � as more

mixed than � when �(�) � �(�), theorem 14 says that we can regard state  as being more

entangled than state � when �( ) � �(�). The idea is that whatever nonlocal resources

state � may contain, they are also contained in  at least in the same amount. This is so

because state � can be obtained from  by means of a transformation that, by de�nition,

can not enhance non-local properties.
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The degree of entanglement of a bipartite pure state  is directly related to the degree

of disorder of the corresponding reduced density matrix �A. A pure state transformation

through LOCC of a bipartite system AB is possible if, and only if, it implies an increase

in the order of part A (equivalently, of part B). There are other properties that entangled

states inherit from majorization. Recall that the later de�nes only a partial order. Thus,

we have couples of pure states whose entanglement is incomparable, that is, neither of the

states can be converted into the other by means of LOCC. And example of this are states  

and � with Schmidt coeÆcients given by �( ) = (0:5; 0:25; 0:25) and �(�) = (0:4; 0:4; 0:2).

A surprising result of entanglement transformations is the so called entanglement catal-

ysis. As shown by Jonathan and Plenio 21, there are incomparable pure states  and �

such that the transformation  ! � cannot be accomplished, but there is a catalyzing

state � such that  
� ! �
� can be accomplished. Here state � is necessary to transform

 into � by LOCC, but is not used up during the process. As an explicit example of this

, consider the states

j i =
p
0:4j00i+

p
0:4j11i+

p
0:1j22i+

p
0:1j33i (33)

j�i =
p
0:5j00i+

p
0:25j11i+

p
0:25j11i (34)

j�i =
p
0:6j00i+

p
0:4j11i: (35)

It is then easy to check that �( 
 l) � �(�
 l) while condition �( ) � �(�) is not ful�lled,

and thus the transformation of  into � is only possible in presence of � .

4.3. Explicit conversion strategies and their classical communication cost

Let us discuss now two explicit protocols for a LOCC deterministic conversion be-

tween pure states. We shall point out in both cases how much classical communication is

required. The classical communication cost of a protocol is an important issue in some cir-

cumstances. Suppose the conversion is needed, for instance, while computing a distributed

function. If the aim of using entanglement is to reduce the communication complexity of

the function, it is important to have available conversion protocols requiring little classical

communication. The study of the classical communication cost in entanglement transfor-

mations was initiated in 27, in the context of asymptotic transformations.

We already pointed out that the proof of theorem 13 on quantum measurements pro-

vides us with a protocol to transform bipartite pure states. This �rst construction goes

as follows. If a deterministic conversion  ! � is to be possible by means of LOCC,

then we have that �( ) � �(�), which by theorem 1 implies that �( ) = D�(�) for

some doubly stochastic matrix D. In turn, Birkho� theorem says that D decomposes

into n random permutations, D =
P
j pjPj , and Caratheodory's theorem ensures that

a decomposition exists with n = d2 � 2d + 2. The measurement operators fFjg, given
by Fj � q

1=2
j (�

�
A)

1=2P
y
j (�

 
A)

�1=2, de�ne then a n outcome measurement for Alice that,

when supplemented with extra, outcome-dependent local unitary operations, determinis-

tically transforms  into �. This protocol requires sending about 2 log
2
d bits from Bob to

Alice, corresponding to communicating which of the n measurement outcomes Alice has

obtained.
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We examine now an alternative protocol28 that requires only log
2
d bits of communi-

cation. It is based on exploiting the corollary of theorem 10 and constitutes yet another

instance of application of majorization theory to entanglement transformations. Notice

that if

j i =
dX
i=1

p
�ijiAijiBi (36)

can be transformed into j�i by LOCC, that is, �( ) � �(�), then we can write, up to local

unitary operations,

j�i =
dX
i=1

p
�ij�iijiBi; (37)

that is, with the same coeÆcients
p
�i as  , but using a set of (possibly) non-orthogonal

normalized vectors fj�iig in part A.

Then the operator Fj �
P
i !

ij j�iihiAj, ! � exp(i2�=d), applied on part A transforms

 into j�ji =
Pd

i=1

p
�i!

ij j�iijiBi, which becomes � after a diagonal unitary operation

on part B that removes the phases wij . To see that
P
j F

y
j Fj = I, that is, that fFjg

de�ne indeed a d-outcome measurement, just regard the Fj as components of a vector ~F

and notice that

~F =

0
B@

F1
...

Fd

1
CA = U

0
B@

j�1ih1Aj
...

j�dihjdAj

1
CA � U~v; (38)

where U is a unitary matrix with entries uij = !ij and vector ~v satis�es ~vy �~v = IA. Now,P
j F

y
j Fj = ~F y � ~F = (~vyUy) � (U~v) = ~vy � ~v = IA. Since this measurement has only d

outcomes, Alice needs to communicate log
2
d bits of information to Bob so that he knows

which unitary operation he is to apply on part B.

4.4. Majorization versus entanglement monotones

A fruitful approach to entanglement transformations, not necessarily restricted to the

bipartite pure-state case, has been the identi�cation and study of those quantities that have

a monotonic behaviour under LOCC, the so called entanglement monotones
8. In a similar

way as conservation laws, such as that of energy and of linear and angular momenta, imply

constraints in the evolution of a dynamical system, entanglement monotones are functions

of the state of a composite system that set constraints LOCC transformations must satisfy.

Here we have been concerned with transformations involving only pure states. Suppose

that the transformation  ! fpj ;  jg can be accomplished by means of LOCC. A function

� is then a (non-increasing) entanglement monotone if, for any such initial and �nal states,

it ful�lls

�( ) �
X
j

pj�( j): (39)
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Let us now suppose �( ) has been shown to be an entanglement monotone. Obviously,

if a given pure-state transformation � ! fqj ; �jg results in an increase of �, i.e. if condition
(39) is not ful�lled for � and fqj ; �jg, then that transformation cannot be implemented

using only LOCC. Thus, for each entanglement monotone � that we identify, we obtain a

constraint the transformation � ! fqj ; �jg has to ful�ll if it is to be accomplished by means

of LOCC. A remarkable achievement would then be to eventually identify a complete set

of entanglement monotones, that is, a set f�1; �2; :::g such that, given any transformation,

we could assess whether it can be accomplished locally by simply checking whether none

of these functions increases.

In a series of contributions by Nielsen 7, Vidal 19 and Jonathan and Plenio 20 a com-

plete set of monotones for bipartite pure states has been identi�ed. Consider the ordered

Schmidt coeÆcients �
#
1
� ::: � �

#
d � 0 of a state  and, for each l = 1; :::; d, de�ne the

entanglement monotones El( ) as

El( ) �
nX
i=l

�
#
i : (40)

Then theorem 16 can be rephrased in terms of the entanglement monotones El as

Theorem 17 The pure state transformation  ! fpj ;  jg can be accomplished using

only LOCC if, and only if,

El( ) �
X
j

pjEl( j); l = 1; :::; d: (41)

That is, a necessary and suÆcient condition for the transformation  ! fpj ;  jg to

be possible by means of LOCC is that none of the monotones El, l = 1; :::; d, increases

on average during the transformation. Clearly, each of the inequalities in (41) is just one

of the majorization inequalities in of Eq. (32). Nevertheless, approaching entanglement

transformations from the viewpoint of entanglement monotones has the advantage that,

contrary to majorization, the analysis is not restricted to bipartite pure states.

In this more general setting several generalizations of the previous results have been

reported. These involve approximate transformations29, conversion of mixed states30 and

transformations in multipartite systems31. Even a criterion for separability has been found

in terms of majorization relations32.

4.5. Asymptotic transformations

Entanglement transformations have also been studied in the so called asymptotic

regime23, where instead of a single copy of the state  , a large number N of copies is

collectively manipulated, using LOCC, to obtain a large number of copies of �. Asymp-

totic transformations fall beyond the scope of the present review paper. Nevertheless, we

�nd it instructive to conclude it by making the connection between the conditions ruling

non-asymptotic and asymptotic entanglement transformations.

As Bennett, Bernstein, Popescu and Tapp showed in their pionering contribution23, in

the limit of large N the state  
N can be converted into the state �
M with arbitrarily
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high �delity if, and only if,

NS(�
 
A) �MS(�

�
A); (42)

that is, if and only if the von Neumann entropy of the reduced density matrix for subsystem

A (identically for B) is not increased during the transformation. Thus, in this asymptotic

limit all inequalities involved in the majorization relation of theorem 14 collapse into

a single inequality for the von Neumann entropy. This can be understood by expanding

states  
N and �
M in their Schmidt decompositions and by noticing that for large N and

M most of the majorization inequalities of Eqs. (6) become very sensitive to perturbations

of the Schmidt coe�ecients of �
M . A "small" modi�cation of the latter is suÆcient for the

inequalities to be ful�lled, even if they were not ful�lled initially. Only those inequalities

setting conditions similar to Eq. (42) turn out to be robust against such modi�cations,

and thus only condition (42) matters in the large N regime, where (asymptotically perfect)

approximations to �
M are accepted as the output of the transformation.

Conclusions

Majorization was originally developed to make precise the notion that a probability

distribution is more mixed than another one. In this paper we have described the important

role majorization plays in entanglement theory, where it rules the feasibility of bipartite

pure-state transformations. We have made special emphasis on the reasons why such a

connection between majorization and entanglement transformations exist. We have seen

that in order to transform an entangled pure state of a system AB, a local measurement

on, say, part A is required. Such a measurement necessarily increases the order of the

reduced density matrix of A, in accordance with the idea that by means of a measurement

we learn about the system being measured. This process is also ruled by a majorization

relation, and this is what accounts for the tight relation between local disorder and non-

local correlations, between majorization and entanglement.
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