Difference between revisions of "De Bruijn-Newman constant"
(→Bibliography) |
|||
Line 97: | Line 97: | ||
* [KKL2009] H. Ki, Y. O. Kim, and J. Lee, On the de Bruijn-Newman constant, Advances in Mathematics, 22 (2009), 281–306. [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.5595&rep=rep1&type=pdf Citeseer] | * [KKL2009] H. Ki, Y. O. Kim, and J. Lee, On the de Bruijn-Newman constant, Advances in Mathematics, 22 (2009), 281–306. [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.5595&rep=rep1&type=pdf Citeseer] | ||
* [N1976] C. M. Newman, Fourier transforms with only real zeroes, Proc. Amer. Math. Soc. 61 (1976), 246–251. | * [N1976] C. M. Newman, Fourier transforms with only real zeroes, Proc. Amer. Math. Soc. 61 (1976), 246–251. | ||
− | * [RT2018] B. Rodgers, T. Tao, The de Bruijn-Newman constant is negative, preprint. [https://arxiv.org/abs/1801.05914 arXiv:1801.05914] | + | * [RT2018] B. Rodgers, T. Tao, The de Bruijn-Newman constant is non-negative, preprint. [https://arxiv.org/abs/1801.05914 arXiv:1801.05914] |
Revision as of 13:21, 26 January 2018
For each real number [math]t[/math], define the entire function [math]H_t: {\mathbf C} \to {\mathbf C}[/math] by the formula
- [math]\displaystyle H_t(z) := \int_0^\infty e^{tu^2} \Phi(u) \cos(zu)\ du[/math]
where [math]\Phi[/math] is the super-exponentially decaying function
- [math]\displaystyle \Phi(u) := \sum_{n=1}^\infty (2\pi^2 n^4 e^{9u} - 3 \pi n^2 e^{5u}) \exp(-\pi n^2 e^{4u}).[/math]
It is known that [math]\Phi[/math] is even, and that [math]H_t[/math] is even, real on the real axis, and obeys the functional equation [math]H_t(\overline{z}) = \overline{H_t(z)}[/math]. In particular, the zeroes of [math]H_t[/math] are symmetric about both the real and imaginary axes. One can also express [math]H_t[/math] in a number of different forms, such as
- [math]\displaystyle H_t(z) = \frac{1}{2} \int_{\bf R} e^{tu^2} \Phi(u) e^{izu}\ du[/math]
or
- [math]\displaystyle H_t(z) = \frac{1}{2} \int_0^\infty e^{t\log^2 x} \Phi(\log x) e^{iz \log x}\ \frac{dx}{x}.[/math]
In the notation of [KKL2009], one has
- [math]\displaystyle H_t(z) = \frac{1}{2} \Xi_{4t}(2z).[/math]
- Note: there may be a typo in the definition of [math]\Xi_\lambda[/math] in [KKL2009], they may instead have intended to write [math]4\lambda (\log x)^2 + 2 it \log x[/math] in place of [math]\frac{\lambda}{4} (\log x)^2 + \frac{it}{2} \log x[/math] in that definition. If so, the relationship would be [math]H_t(z) = \frac{1}{2} \Xi_{t/4}(z/2)[/math] instead of [math]H_t(z) = \frac{1}{2} \Xi_{4t}(2z)[/math].
De Bruijn [B1950] and Newman [N1976] showed that there existed a constant, the de Bruijn-Newman constant [math]\Lambda[/math], such that [math]H_t[/math] has all zeroes real precisely when [math]t \geq \Lambda[/math]. The Riemann hypothesis is equivalent to the claim that [math]\Lambda \leq 0[/math]. Currently it is known that [math]0 \leq \Lambda \lt 1/2[/math] (lower bound in [RT2018], upper bound in [KKL2009]).
Contents
[math]t=0[/math]
When [math]t=0[/math], one has
- [math]\displaystyle H_0(z) = \frac{1}{8} \xi( \frac{1}{2} + \frac{iz}{2} ) [/math]
where
- [math]\displaystyle \xi(s) := \frac{s(s-1)}{2} \pi^{s/2} \Gamma(s/2) \zeta(s)[/math]
is the Riemann xi function. In particular, [math]z[/math] is a zero of [math]H_0[/math] if and only if [math]\frac{1}{2} + \frac{iz}{2}[/math] is a non-trivial zero of the Riemann zeta function. Thus, for instance, the Riemann hypothesis is equivalent to all the zeroes of [math]H_0[/math] being real, and Riemann-von Mangoldt formula (in the explicit form given by Backlund) gives
- [math]\displaystyle N_0(T) - (\frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} - \frac{7}{8})| \lt 0.137 \log (T/2) + 0.443 \log\log(T/2) + 4.350 [/math]
for any [math]T \gt 4[/math], where [math]N_0(T)[/math] denotes the number of zeroes of [math]H_0[/math] with real part between 0 and T.
The first [math]10^{13}[/math] zeroes of [math]H_0[/math] (to the right of the origin) are real [G2004]. This numerical computation uses the Odlyzko-Schonhage algorithm.
[math]t\gt0[/math]
For any [math]t\gt0[/math], it is known that all but finitely many of the zeroes of [math]H_t[/math] are real and simple [KKL2009, Theorem 1.3]
Let [math]\sigma_{max}(t)[/math] denote the largest imaginary part of a zero of [math]H_t[/math], thus [math]\sigma_{max}(t)=0[/math] if and only if [math]t \geq \Lambda[/math]. It is known that the quantity [math]\frac{1}{2} \sigma_{max}(t)^2 + t[/math] is non-decreasing in time whenever [math]\sigma_{max}(t)\gt0[/math] (see [KKL2009, Proposition A]. In particular we have
- [math]\displaystyle \Lambda \leq t + \frac{1}{2} \sigma_{max}(t)^2[/math]
for any [math]t[/math].
The zeroes [math]z_j(t)[/math] of [math]H_t[/math] (formally, at least) obey the system of ODE
- [math]\partial_t z_j(t) = - \sum_{k \neq j} \frac{2}{z_k(t) - z_j(t)}[/math]
where the sum may have to be interpreted in a principal value sense. (See for instance [CSV1994, Lemma 2.4]. This lemma assumes that [math]t \gt \Lambda[/math], but it is likely that one can extend to other [math]t \geq 0[/math] as well.)
In [KKL2009, Theorem 1.4], it is shown that for any fixed [math]t\gt0[/math], the number [math]N_t(T)[/math] of zeroes of [math]H_t[/math] with real part between 0 and T obeys the asymptotic
- [math]N_t(T) = \frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} + t \log T + O(1) [/math]
as [math]T \to \infty[/math] (caution: the error term here is not uniform in t). Also, the zeroes behave like an arithmetic progression in the sense that
- [math] z_{k+1}(t) - z_k(t) = (1+o(1)) \frac{4\pi}{\log |z_k|(t)} = (1+o(1)) \frac{4\pi}{\log k} [/math]
as [math]k \to +\infty[/math].
Threads
- Polymath proposal: upper bounding the de Bruijn-Newman constant, Terence Tao, Jan 24, 2018.
Other blog posts and online discussion
- Heat flow and zeroes of polynomials, Terence Tao, Oct 17, 2017.
- The de Bruijn-Newman constant is non-negative, Terence Tao, Jan 19, 2018.
- Lehmer pairs and GUE, Terence Tao, Jan 20, 2018.
- A new polymath proposal (related to the Riemann hypothesis) over Tao's blog, Gil Kalai, Jan 26, 2018.
Code and data
Wikipedia and other references
Bibliography
- [B1950] N. C. de Bruijn, The roots of trigonometric integrals, Duke J. Math. 17 (1950), 197–226.
- [CSV1994] G. Csordas, W. Smith, R. S. Varga, Lehmer pairs of zeros, the de Bruijn-Newman constant Λ, and the Riemann hypothesis, Constr. Approx. 10 (1994), no. 1, 107–129.
- [G2004] Gourdon, Xavier (2004), The [math]10^13[/math] first zeros of the Riemann Zeta function, and zeros computation at very large height
- [KKL2009] H. Ki, Y. O. Kim, and J. Lee, On the de Bruijn-Newman constant, Advances in Mathematics, 22 (2009), 281–306. Citeseer
- [N1976] C. M. Newman, Fourier transforms with only real zeroes, Proc. Amer. Math. Soc. 61 (1976), 246–251.
- [RT2018] B. Rodgers, T. Tao, The de Bruijn-Newman constant is non-negative, preprint. arXiv:1801.05914