# Difference between revisions of "De Bruijn-Newman constant"

Line 68: | Line 68: | ||

* [https://terrytao.wordpress.com/2018/01/24/polymath-proposal-upper-bounding-the-de-bruijn-newman-constant/ Polymath proposal: upper bounding the de Bruijn-Newman constant], Terence Tao, Jan 24, 2018. | * [https://terrytao.wordpress.com/2018/01/24/polymath-proposal-upper-bounding-the-de-bruijn-newman-constant/ Polymath proposal: upper bounding the de Bruijn-Newman constant], Terence Tao, Jan 24, 2018. | ||

+ | * [https://terrytao.wordpress.com/2018/01/27/polymath15-first-thread-computing-h_t-asymptotics-and-dynamics-of-zeroes/ Polymath15, first thread: computing H_t, asymptotics, and dynamics of zeroes], Terence Tao, Jan 27, 2018. | ||

== Other blog posts and online discussion == | == Other blog posts and online discussion == |

## Revision as of 17:11, 27 January 2018

For each real number [math]t[/math], define the entire function [math]H_t: {\mathbf C} \to {\mathbf C}[/math] by the formula

- [math]\displaystyle H_t(z) := \int_0^\infty e^{tu^2} \Phi(u) \cos(zu)\ du[/math]

where [math]\Phi[/math] is the super-exponentially decaying function

- [math]\displaystyle \Phi(u) := \sum_{n=1}^\infty (2\pi^2 n^4 e^{9u} - 3 \pi n^2 e^{5u}) \exp(-\pi n^2 e^{4u}).[/math]

It is known that [math]\Phi[/math] is even, and that [math]H_t[/math] is even, real on the real axis, and obeys the functional equation [math]H_t(\overline{z}) = \overline{H_t(z)}[/math]. In particular, the zeroes of [math]H_t[/math] are symmetric about both the real and imaginary axes. One can also express [math]H_t[/math] in a number of different forms, such as

- [math]\displaystyle H_t(z) = \frac{1}{2} \int_{\bf R} e^{tu^2} \Phi(u) e^{izu}\ du[/math]

or

- [math]\displaystyle H_t(z) = \frac{1}{2} \int_0^\infty e^{t\log^2 x} \Phi(\log x) e^{iz \log x}\ \frac{dx}{x}.[/math]

In the notation of [KKL2009], one has

- [math]\displaystyle H_t(z) = \frac{1}{8} \Xi_{t/4}(z/2).[/math]

De Bruijn [B1950] and Newman [N1976] showed that there existed a constant, the *de Bruijn-Newman constant* [math]\Lambda[/math], such that [math]H_t[/math] has all zeroes real precisely when [math]t \geq \Lambda[/math]. The Riemann hypothesis is equivalent to the claim that [math]\Lambda \leq 0[/math]. Currently it is known that [math]0 \leq \Lambda \lt 1/2[/math] (lower bound in [RT2018], upper bound in [KKL2009]).

## Contents

## [math]t=0[/math]

When [math]t=0[/math], one has

- [math]\displaystyle H_0(z) = \frac{1}{8} \xi( \frac{1}{2} + \frac{iz}{2} ) [/math]

where

- [math]\displaystyle \xi(s) := \frac{s(s-1)}{2} \pi^{s/2} \Gamma(s/2) \zeta(s)[/math]

is the Riemann xi function. In particular, [math]z[/math] is a zero of [math]H_0[/math] if and only if [math]\frac{1}{2} + \frac{iz}{2}[/math] is a non-trivial zero of the Riemann zeta function. Thus, for instance, the Riemann hypothesis is equivalent to all the zeroes of [math]H_0[/math] being real, and Riemann-von Mangoldt formula (in the explicit form given by Backlund) gives

- [math]\displaystyle N_0(T) - (\frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} - \frac{7}{8})| \lt 0.137 \log (T/2) + 0.443 \log\log(T/2) + 4.350 [/math]

for any [math]T \gt 4[/math], where [math]N_0(T)[/math] denotes the number of zeroes of [math]H_0[/math] with real part between 0 and T.

The first [math]10^{13}[/math] zeroes of [math]H_0[/math] (to the right of the origin) are real [G2004]. This numerical computation uses the Odlyzko-Schonhage algorithm.

## [math]t\gt0[/math]

For any [math]t\gt0[/math], it is known that all but finitely many of the zeroes of [math]H_t[/math] are real and simple [KKL2009, Theorem 1.3]. In fact, assuming the Riemann hypothesis, *all* of the zeroes of [math]H_t[/math] are real and simple [CSV1994, Corollary 2].

Let [math]\sigma_{max}(t)[/math] denote the largest imaginary part of a zero of [math]H_t[/math], thus [math]\sigma_{max}(t)=0[/math] if and only if [math]t \geq \Lambda[/math]. It is known that the quantity [math]\frac{1}{2} \sigma_{max}(t)^2 + t[/math] is non-decreasing in time whenever [math]\sigma_{max}(t)\gt0[/math] (see [KKL2009, Proposition A]. In particular we have

- [math]\displaystyle \Lambda \leq t + \frac{1}{2} \sigma_{max}(t)^2[/math]

for any [math]t[/math].

The zeroes [math]z_j(t)[/math] of [math]H_t[/math] (formally, at least) obey the system of ODE

- [math]\partial_t z_j(t) = - \sum_{k \neq j} \frac{2}{z_k(t) - z_j(t)}[/math]

where the sum may have to be interpreted in a principal value sense. (See for instance [CSV1994, Lemma 2.4]. This lemma assumes that [math]t \gt \Lambda[/math], but it is likely that one can extend to other [math]t \geq 0[/math] as well.)

In [KKL2009, Theorem 1.4], it is shown that for any fixed [math]t\gt0[/math], the number [math]N_t(T)[/math] of zeroes of [math]H_t[/math] with real part between 0 and T obeys the asymptotic

- [math]N_t(T) = \frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} + \frac{t}{16} \log T + O(1) [/math]

as [math]T \to \infty[/math] (caution: the error term here is not uniform in t). Also, the zeroes behave like an arithmetic progression in the sense that

- [math] z_{k+1}(t) - z_k(t) = (1+o(1)) \frac{4\pi}{\log |z_k|(t)} = (1+o(1)) \frac{4\pi}{\log k} [/math]

as [math]k \to +\infty[/math].

## Threads

- Polymath proposal: upper bounding the de Bruijn-Newman constant, Terence Tao, Jan 24, 2018.
- Polymath15, first thread: computing H_t, asymptotics, and dynamics of zeroes, Terence Tao, Jan 27, 2018.

## Other blog posts and online discussion

- Heat flow and zeroes of polynomials, Terence Tao, Oct 17, 2017.
- The de Bruijn-Newman constant is non-negative, Terence Tao, Jan 19, 2018.
- Lehmer pairs and GUE, Terence Tao, Jan 20, 2018.
- A new polymath proposal (related to the Riemann hypothesis) over Tao's blog, Gil Kalai, Jan 26, 2018.

## Code and data

## Wikipedia and other references

## Bibliography

- [B1950] N. C. de Bruijn, The roots of trigonometric integrals, Duke J. Math. 17 (1950), 197–226.
- [CSV1994] G. Csordas, W. Smith, R. S. Varga, Lehmer pairs of zeros, the de Bruijn-Newman constant Λ, and the Riemann hypothesis, Constr. Approx. 10 (1994), no. 1, 107–129.
- [G2004] Gourdon, Xavier (2004), The [math]10^{13}[/math] first zeros of the Riemann Zeta function, and zeros computation at very large height
- [KKL2009] H. Ki, Y. O. Kim, and J. Lee, On the de Bruijn-Newman constant, Advances in Mathematics, 22 (2009), 281–306. Citeseer
- [N1976] C. M. Newman, Fourier transforms with only real zeroes, Proc. Amer. Math. Soc. 61 (1976), 246–251.
- [RT2018] B. Rodgers, T. Tao, The de Bruijn-Newman constant is non-negative, preprint. arXiv:1801.05914