Difference between revisions of "De Bruijn-Newman constant"

From Polymath1Wiki
Jump to: navigation, search
Line 7: Line 7:
 
:<math>\displaystyle \Phi(u) := \sum_{n=1}^\infty (2\pi^2 n^4 e^{9u} - 3 \pi n^2 e^{5u}) \exp(-\pi n^2 e^{4u}).</math>
 
:<math>\displaystyle \Phi(u) := \sum_{n=1}^\infty (2\pi^2 n^4 e^{9u} - 3 \pi n^2 e^{5u}) \exp(-\pi n^2 e^{4u}).</math>
  
It is known that <math>\Phi</math> is even, and that <math>H_t</math> is even, real on the real axis, and obeys the functional equation <math>H_t(\overline{z}) = \overline{H_t(z)}</math>.  In particular, the zeroes of <math>H_t</math> are symmetric about both the real and imaginary axes.
+
It is known that <math>\Phi</math> is even, and that <math>H_t</math> is even, real on the real axis, and obeys the functional equation <math>H_t(\overline{z}) = \overline{H_t(z)}</math>.  In particular, the zeroes of <math>H_t</math> are symmetric about both the real and imaginary axes. One can also express <math>H_t</math> in a number of different forms, such as
 +
 
 +
:<math>\displaystyle H_t(z) = \frac{1}{2} \int_{\bf R} e^{tu^2} \Phi(u) e^{izu}\ du</math>
 +
 
 +
or
 +
 
 +
:<math>\displaystyle H_t(z) = \frac{1}{2} \int_{\bf R} e^{t\log^2 x} \Phi(\log x) e^{iz \log x}\ \frac{dx}{x}.</math>
 +
 
 +
In the notation of [KKL2009], one has
 +
 
 +
:<math>\displaystyle H_t(z) = \Xi_{4t}(2z).</math>
  
 
De Bruijn [B1950] and Newman [N1976] showed that there existed a constant, the ''de Bruijn-Newman constant'' <math>\Lambda</math>, such that <math>H_t</math> has all zeroes real precisely when <math>t \geq \Lambda</math>.  The Riemann hypothesis is equivalent to the claim that <math>\Lambda \leq 0</math>.  Currently it is known that <math>0 \leq \Lambda < 1/2</math> (lower bound in [RT2018], upper bound in [KKL2009]).
 
De Bruijn [B1950] and Newman [N1976] showed that there existed a constant, the ''de Bruijn-Newman constant'' <math>\Lambda</math>, such that <math>H_t</math> has all zeroes real precisely when <math>t \geq \Lambda</math>.  The Riemann hypothesis is equivalent to the claim that <math>\Lambda \leq 0</math>.  Currently it is known that <math>0 \leq \Lambda < 1/2</math> (lower bound in [RT2018], upper bound in [KKL2009]).
Line 21: Line 31:
 
:<math>\displaystyle \xi(s) := \frac{s(s-1)}{2} \pi^{s/2} \Gamma(s/2) \zeta(s)</math>
 
:<math>\displaystyle \xi(s) := \frac{s(s-1)}{2} \pi^{s/2} \Gamma(s/2) \zeta(s)</math>
  
is the Riemann xi function.  In particular, <math>z</math> is a zero of <math>H_0</math> if and only if <math>\frac{1}{2} + \frac{iz}{2}</math> is a non-trivial zero of the Riemann zeta function.
+
is the Riemann xi function.  In particular, <math>z</math> is a zero of <math>H_0</math> if and only if <math>\frac{1}{2} + \frac{iz}{2}</math> is a non-trivial zero of the Riemann zeta function. Thus, for instance, the Riemann hypothesis is equivalent to all the zeroes of <math>H_0</math>
 +
being real, and [https://en.wikipedia.org/wiki/Riemann%E2%80%93von_Mangoldt_formula Riemann-von Mangoldt formula] (in the explicit form given by Backlund) gives
 +
 
 +
:<math>\displaystyle N_0(T) - (\frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} - \frac{7}{8})| <  0.137 \log (T/2) + 0.443  \log\log(T/2) + 4.350 </math>
 +
 
 +
for any <math>T > 4</math>, where <math>N_0(T)</math> denotes the number of zeroes of <math>H_0</math> with real part between 0 and T.
 +
 
 +
The first <math>10^{13}</math> zeroes of <math>H_0</math> (to the right of the origin) are real [G2004].  This numerical computation uses the Odlyzko-Schonhage algorithm.
 +
 
  
 
== <math>t>0</math> ==
 
== <math>t>0</math> ==
Line 38: Line 56:
  
 
where the sum may have to be interpreted in a principal value sense.  (See for instance [CSV1994, Lemma 2.4].  This lemma assumes that <math>t > \Lambda</math>, but it is likely that one can extend to other <math>t \geq 0</math> as well.)
 
where the sum may have to be interpreted in a principal value sense.  (See for instance [CSV1994, Lemma 2.4].  This lemma assumes that <math>t > \Lambda</math>, but it is likely that one can extend to other <math>t \geq 0</math> as well.)
 +
 +
In [KKL2009, Theorem 1.4], it is shown that for any fixed <math>t>0</math>, the number <math>N_t(T)</math> of zeroes of <math>H_t</math> with real part between 0 and T obeys the asymptotic
 +
 +
:<math>N_t(T) = \frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} + t \log T + O(1) </math>
 +
 +
as <math>T \to \infty</math> (caution: the error term here is not uniform in t).  Also, the zeroes behave like an arithmetic progression in the sense that
 +
 +
:<math> z_{k+1}(t) - z_k(t) = (1+o(1)) \frac{4\pi}{\log |z_k|(t)} = (1+o(1)) \frac{4\pi}{\log k} </math>
 +
 +
as <math>k \to +\infty</math>.
 +
 +
 +
== Threads ==
 +
 +
* [https://terrytao.wordpress.com/2018/01/24/polymath-proposal-upper-bounding-the-de-bruijn-newman-constant/ Polymath proposal: upper bounding the de Bruijn-Newman constant], Terence Tao, Jan 24, 2018.
 +
 +
== Other blog posts and online discussion ==
 +
 +
* [https://terrytao.wordpress.com/2017/10/17/heat-flow-and-zeroes-of-polynomials/ Heat flow and zeroes of polynomials], Terence Tao, Oct 17, 2017.
 +
* [https://terrytao.wordpress.com/2018/01/19/the-de-bruijn-newman-constant-is-non-negativ/ The de Bruijn-Newman constant is non-negative], Terence Tao, Jan 19, 2018.
 +
* [https://terrytao.wordpress.com/2018/01/20/lehmer-pairs-and-gue/ Lehmer pairs and GUE], Terence Tao, Jan 20, 2018.
 +
* [https://polymathprojects.org/2018/01/26/a-new-polymath-proposal-related-to-the-riemann-hypothesis-over-taos-blog/ A new polymath proposal (related to the Riemann hypothesis) over Tao's blog], Gil Kalai, Jan 26, 2018.
 +
 +
== Code and data ==
 +
 +
* [https://github.com/km-git-acc/dbn_upper_bound Github repository]
  
 
== Wikipedia and other references ==
 
== Wikipedia and other references ==
Line 48: Line 92:
 
* [B1950] N. C. de Bruijn, The roots of trigonometric integrals, Duke J. Math. 17 (1950), 197–226.
 
* [B1950] N. C. de Bruijn, The roots of trigonometric integrals, Duke J. Math. 17 (1950), 197–226.
 
* [CSV1994] G. Csordas, W. Smith, R. S. Varga, [https://link.springer.com/article/10.1007/BF01205170 Lehmer pairs of zeros, the de Bruijn-Newman constant Λ, and the Riemann hypothesis], Constr. Approx. 10 (1994), no. 1, 107–129.
 
* [CSV1994] G. Csordas, W. Smith, R. S. Varga, [https://link.springer.com/article/10.1007/BF01205170 Lehmer pairs of zeros, the de Bruijn-Newman constant Λ, and the Riemann hypothesis], Constr. Approx. 10 (1994), no. 1, 107–129.
 +
* [G2004] Gourdon, Xavier (2004), [http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf The <math>10^13</math> first zeros of the Riemann Zeta function, and zeros computation at very large height]
 
* [KKL2009] H. Ki, Y. O. Kim, and J. Lee, On the de Bruijn-Newman constant, Advances in Mathematics, 22 (2009), 281–306. [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.5595&rep=rep1&type=pdf Citeseer]
 
* [KKL2009] H. Ki, Y. O. Kim, and J. Lee, On the de Bruijn-Newman constant, Advances in Mathematics, 22 (2009), 281–306. [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.5595&rep=rep1&type=pdf Citeseer]
 
* [N1976] C. M. Newman, Fourier transforms with only real zeroes, Proc. Amer. Math. Soc. 61 (1976), 246–251.
 
* [N1976] C. M. Newman, Fourier transforms with only real zeroes, Proc. Amer. Math. Soc. 61 (1976), 246–251.
 
* [RT2018] B. Rodgers, T. Tao, The de Bruijn-Newman constant is negative, preprint. [https://arxiv.org/abs/1801.05914 arXiv:1801.05914]
 
* [RT2018] B. Rodgers, T. Tao, The de Bruijn-Newman constant is negative, preprint. [https://arxiv.org/abs/1801.05914 arXiv:1801.05914]

Revision as of 08:14, 26 January 2018

For each real number [math]t[/math], define the entire function [math]H_t: {\mathbf C} \to {\mathbf C}[/math] by the formula

[math]\displaystyle H_t(z) := \int_0^\infty e^{tu^2} \Phi(u) \cos(zu)\ du[/math]

where [math]\Phi[/math] is the super-exponentially decaying function

[math]\displaystyle \Phi(u) := \sum_{n=1}^\infty (2\pi^2 n^4 e^{9u} - 3 \pi n^2 e^{5u}) \exp(-\pi n^2 e^{4u}).[/math]

It is known that [math]\Phi[/math] is even, and that [math]H_t[/math] is even, real on the real axis, and obeys the functional equation [math]H_t(\overline{z}) = \overline{H_t(z)}[/math]. In particular, the zeroes of [math]H_t[/math] are symmetric about both the real and imaginary axes. One can also express [math]H_t[/math] in a number of different forms, such as

[math]\displaystyle H_t(z) = \frac{1}{2} \int_{\bf R} e^{tu^2} \Phi(u) e^{izu}\ du[/math]

or

[math]\displaystyle H_t(z) = \frac{1}{2} \int_{\bf R} e^{t\log^2 x} \Phi(\log x) e^{iz \log x}\ \frac{dx}{x}.[/math]

In the notation of [KKL2009], one has

[math]\displaystyle H_t(z) = \Xi_{4t}(2z).[/math]

De Bruijn [B1950] and Newman [N1976] showed that there existed a constant, the de Bruijn-Newman constant [math]\Lambda[/math], such that [math]H_t[/math] has all zeroes real precisely when [math]t \geq \Lambda[/math]. The Riemann hypothesis is equivalent to the claim that [math]\Lambda \leq 0[/math]. Currently it is known that [math]0 \leq \Lambda \lt 1/2[/math] (lower bound in [RT2018], upper bound in [KKL2009]).

[math]t=0[/math]

When [math]t=0[/math], one has

[math]\displaystyle H_0(z) = \frac{1}{8} \xi( \frac{1}{2} + \frac{iz}{2} ) [/math]

where

[math]\displaystyle \xi(s) := \frac{s(s-1)}{2} \pi^{s/2} \Gamma(s/2) \zeta(s)[/math]

is the Riemann xi function. In particular, [math]z[/math] is a zero of [math]H_0[/math] if and only if [math]\frac{1}{2} + \frac{iz}{2}[/math] is a non-trivial zero of the Riemann zeta function. Thus, for instance, the Riemann hypothesis is equivalent to all the zeroes of [math]H_0[/math]

being real, and Riemann-von Mangoldt formula (in the explicit form given by Backlund) gives
[math]\displaystyle N_0(T) - (\frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} - \frac{7}{8})| \lt 0.137 \log (T/2) + 0.443 \log\log(T/2) + 4.350 [/math]

for any [math]T \gt 4[/math], where [math]N_0(T)[/math] denotes the number of zeroes of [math]H_0[/math] with real part between 0 and T.

The first [math]10^{13}[/math] zeroes of [math]H_0[/math] (to the right of the origin) are real [G2004]. This numerical computation uses the Odlyzko-Schonhage algorithm.


[math]t\gt0[/math]

For any [math]t\gt0[/math], it is known that all but finitely many of the zeroes of [math]H_t[/math] are real and simple [KKL2009, Theorem 1.3]

Let [math]\sigma_{max}(t)[/math] denote the largest imaginary part of a zero of [math]H_t[/math], thus [math]\sigma_{max}(t)=0[/math] if and only if [math]t \geq \Lambda[/math]. It is known that the quantity [math]\frac{1}{2} \sigma_{max}(t)^2 + t[/math] is non-decreasing in time whenever [math]\sigma_{max}(t)\gt0[/math] (see [KKL2009, Proposition A]. In particular we have

[math]\displaystyle \Lambda \leq t + \frac{1}{2} \sigma_{max}(t)^2[/math]

for any [math]t[/math].

The zeroes [math]z_j(t)[/math] of [math]H_t[/math] (formally, at least) obey the system of ODE

[math]\partial_t z_j(t) = - \sum_{k \neq j} \frac{2}{z_k(t) - z_j(t)}[/math]

where the sum may have to be interpreted in a principal value sense. (See for instance [CSV1994, Lemma 2.4]. This lemma assumes that [math]t \gt \Lambda[/math], but it is likely that one can extend to other [math]t \geq 0[/math] as well.)

In [KKL2009, Theorem 1.4], it is shown that for any fixed [math]t\gt0[/math], the number [math]N_t(T)[/math] of zeroes of [math]H_t[/math] with real part between 0 and T obeys the asymptotic

[math]N_t(T) = \frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} + t \log T + O(1) [/math]

as [math]T \to \infty[/math] (caution: the error term here is not uniform in t). Also, the zeroes behave like an arithmetic progression in the sense that

[math] z_{k+1}(t) - z_k(t) = (1+o(1)) \frac{4\pi}{\log |z_k|(t)} = (1+o(1)) \frac{4\pi}{\log k} [/math]

as [math]k \to +\infty[/math].


Threads

Other blog posts and online discussion

Code and data

Wikipedia and other references

Bibliography