# Difference between revisions of "De Bruijn-Newman constant"

(→Writeup) |
(→Threads) |
||

Line 95: | Line 95: | ||

* [https://terrytao.wordpress.com/2018/05/04/polymath15-ninth-thread-going-below-0-22/ Polymath15, ninth thread: going below 0.22?], Terence Tao, May 4, 2018. | * [https://terrytao.wordpress.com/2018/05/04/polymath15-ninth-thread-going-below-0-22/ Polymath15, ninth thread: going below 0.22?], Terence Tao, May 4, 2018. | ||

* [https://terrytao.wordpress.com/10725 Polymath15, tenth thread: numerics update], Rudolph Dwars and Kalpesh Muchhal, Sep 6, 2018. | * [https://terrytao.wordpress.com/10725 Polymath15, tenth thread: numerics update], Rudolph Dwars and Kalpesh Muchhal, Sep 6, 2018. | ||

+ | * [https://terrytao.wordpress.com/2018/12/28/polymath-15-eleventh-thread-writing-up-the-results-and-exploring-negative-t/ Polymath 15, eleventh thread: Writing up the results, and exploring negative t], Terence Tao, Dec 28, 2018. | ||

== Other blog posts and online discussion == | == Other blog posts and online discussion == |

## Revision as of 11:14, 28 December 2018

For each real number [math]t[/math], define the entire function [math]H_t: {\mathbf C} \to {\mathbf C}[/math] by the formula

- [math]\displaystyle H_t(z) := \int_0^\infty e^{tu^2} \Phi(u) \cos(zu)\ du[/math]

where [math]\Phi[/math] is the super-exponentially decaying function

- [math]\displaystyle \Phi(u) := \sum_{n=1}^\infty (2\pi^2 n^4 e^{9u} - 3 \pi n^2 e^{5u}) \exp(-\pi n^2 e^{4u}).[/math]

It is known that [math]\Phi[/math] is even, and that [math]H_t[/math] is even, real on the real axis, and obeys the functional equation [math]H_t(\overline{z}) = \overline{H_t(z)}[/math]. In particular, the zeroes of [math]H_t[/math] are symmetric about both the real and imaginary axes. One can also express [math]H_t[/math] in a number of different forms, such as

- [math]\displaystyle H_t(z) = \frac{1}{2} \int_{\bf R} e^{tu^2} \Phi(u) e^{izu}\ du[/math]

or

- [math]\displaystyle H_t(z) = \frac{1}{2} \int_0^\infty e^{t\log^2 x} \Phi(\log x) e^{iz \log x}\ \frac{dx}{x}.[/math]

In the notation of [KKL2009], one has

- [math]\displaystyle H_t(z) = \frac{1}{8} \Xi_{t/4}(z/2).[/math]

De Bruijn [B1950] and Newman [N1976] showed that there existed a constant, the *de Bruijn-Newman constant* [math]\Lambda[/math], such that [math]H_t[/math] has all zeroes real precisely when [math]t \geq \Lambda[/math]. The Riemann hypothesis is equivalent to the claim that [math]\Lambda \leq 0[/math]. Currently it is known that [math]0 \leq \Lambda \lt 1/2[/math] (lower bound in [RT2018], upper bound in [KKL2009]).

The **Polymath15** project seeks to improve the upper bound on [math]\Lambda[/math]. The current strategy is to combine the following three ingredients:

- Numerical zero-free regions for [math]H_t(x+iy)[/math] of the form [math]\{ x+iy: 0 \leq x \leq T; y \geq \varepsilon \}[/math] for explicit [math]T, \varepsilon, t \gt 0[/math].
- Rigorous asymptotics that show that [math]H_t(x+iy)[/math] whenever [math]y \geq \varepsilon[/math] and [math]x \geq T[/math] for a sufficiently large [math]T[/math].
- Dynamics of zeroes results that control [math]\Lambda[/math] in terms of the maximum imaginary part of a zero of [math]H_t[/math].

## Contents

## [math]t=0[/math]

When [math]t=0[/math], one has

- [math]\displaystyle H_0(z) = \frac{1}{8} \xi( \frac{1}{2} + \frac{iz}{2} ) [/math]

where

- [math]\displaystyle \xi(s) := \frac{s(s-1)}{2} \pi^{-s/2} \Gamma(s/2) \zeta(s)[/math]

is the Riemann xi function. In particular, [math]z[/math] is a zero of [math]H_0[/math] if and only if [math]\frac{1}{2} + \frac{iz}{2}[/math] is a non-trivial zero of the Riemann zeta function. Thus, for instance, the Riemann hypothesis is equivalent to all the zeroes of [math]H_0[/math] being real, and Riemann-von Mangoldt formula (in the explicit form given by Backlund) gives

- [math]\displaystyle \left|N_0(T) - (\frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} - \frac{7}{8})\right| \lt 0.137 \log (T/2) + 0.443 \log\log(T/2) + 4.350 [/math]

for any [math]T \gt 4[/math], where [math]N_0(T)[/math] denotes the number of zeroes of [math]H_0[/math] with real part between 0 and T.

The first [math]10^{13}[/math] zeroes of [math]H_0[/math] (to the right of the origin) are real [G2004]. This numerical computation uses the Odlyzko-Schonhage algorithm. In [P2017] it was independently verified that all zeroes of [math]H_0[/math] between 0 and 61,220,092,000 were real.

## [math]t\gt0[/math]

For any [math]t\gt0[/math], it is known that all but finitely many of the zeroes of [math]H_t[/math] are real and simple [KKL2009, Theorem 1.3]. In fact, assuming the Riemann hypothesis, *all* of the zeroes of [math]H_t[/math] are real and simple [CSV1994, Corollary 2].

It is known that [math]\xi[/math] is an entire function of order one ([T1986, Theorem 2.12]). Hence by the fundamental solution for the heat equation, the [math]H_t[/math] are also entire functions of order one for any [math]t[/math].

Because [math]\Phi[/math] is positive, [math]H_t(iy)[/math] is positive for any [math]y[/math], and hence there are no zeroes on the imaginary axis.

Let [math]\sigma_{max}(t)[/math] denote the largest imaginary part of a zero of [math]H_t[/math], thus [math]\sigma_{max}(t)=0[/math] if and only if [math]t \geq \Lambda[/math]. It is known that the quantity [math]\frac{1}{2} \sigma_{max}(t)^2 + t[/math] is non-increasing in time whenever [math]\sigma_{max}(t)\gt0[/math] (see [KKL2009, Proposition A]. In particular we have

- [math]\displaystyle \Lambda \leq t + \frac{1}{2} \sigma_{max}(t)^2[/math]

for any [math]t[/math].

The zeroes [math]z_j(t)[/math] of [math]H_t[/math] obey the system of ODE

- [math]\partial_t z_j(t) = - \sum_{k \neq j} \frac{2}{z_k(t) - z_j(t)}[/math]

where the sum is interpreted in a principal value sense, and excluding those times in which [math]z_j(t)[/math] is a repeated zero. See dynamics of zeros for more details. Writing [math]z_j(t) = x_j(t) + i y_j(t)[/math], we can write the dynamics as

- [math] \partial_t x_j = - \sum_{k \neq j} \frac{2 (x_k - x_j)}{(x_k-x_j)^2 + (y_k-y_j)^2} [/math]
- [math] \partial_t y_j = \sum_{k \neq j} \frac{2 (y_k - y_j)}{(x_k-x_j)^2 + (y_k-y_j)^2} [/math]

where the dependence on [math]t[/math] has been omitted for brevity.

In [KKL2009, Theorem 1.4], it is shown that for any fixed [math]t\gt0[/math], the number [math]N_t(T)[/math] of zeroes of [math]H_t[/math] with real part between 0 and T obeys the asymptotic

- [math]N_t(T) = \frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} + \frac{t}{16} \log T + O(1) [/math]

as [math]T \to \infty[/math] (caution: the error term here is not uniform in t). Also, the zeroes behave like an arithmetic progression in the sense that

- [math] z_{k+1}(t) - z_k(t) = (1+o(1)) \frac{4\pi}{\log |z_k|(t)} = (1+o(1)) \frac{4\pi}{\log k} [/math]

as [math]k \to +\infty[/math].

See asymptotics of H_t for asymptotics of the function [math]H_t[/math], and Effective bounds on H_t and Effective bounds on H_t - second approach for explicit bounds.

## Threads

- Polymath proposal: upper bounding the de Bruijn-Newman constant, Terence Tao, Jan 24, 2018.
- Polymath15, first thread: computing H_t, asymptotics, and dynamics of zeroes, Terence Tao, Jan 27, 2018.
- Polymath15, second thread: generalising the Riemann-Siegel approximate functional equation, Terence Tao and Sujit Nair, Feb 2, 2018.
- Polymath15, third thread: computing and approximating H_t, Terence Tao and Sujit Nair, Feb 12, 2018.
- Polymath 15, fourth thread: closing in on the test problem, Terence Tao, Feb 24, 2018.
- Polymath15, fifth thread: finishing off the test problem?, Terence Tao, Mar 2, 2018.
- Polymath15, sixth thread: the test problem and beyond, Terence Tao, Mar 18, 2018.
- Polymath15, seventh thread: going below 0.48, Terence Tao, Mar 28, 2018.
- Polymath15, eighth thread: going below 0.28, Terence Tao, Apr 17, 2018.
- Polymath15, ninth thread: going below 0.22?, Terence Tao, May 4, 2018.
- Polymath15, tenth thread: numerics update, Rudolph Dwars and Kalpesh Muchhal, Sep 6, 2018.
- Polymath 15, eleventh thread: Writing up the results, and exploring negative t, Terence Tao, Dec 28, 2018.

## Other blog posts and online discussion

- Heat flow and zeroes of polynomials, Terence Tao, Oct 17, 2017.
- The de Bruijn-Newman constant is non-negative, Terence Tao, Jan 19, 2018.
- Lehmer pairs and GUE, Terence Tao, Jan 20, 2018.
- A new polymath proposal (related to the Riemann hypothesis) over Tao's blog, Gil Kalai, Jan 26, 2018.

## Code and data

## Writeup

Here are the Polymath15 grant acknowledgments.

## Test problem

## Zero-free regions

See Zero-free regions.

## Wikipedia and other references

## Bibliography

- [A2011] J. Arias de Reyna, High-precision computation of Riemann's zeta function by the Riemann-Siegel asymptotic formula, I, Mathematics of Computation, Volume 80, Number 274, April 2011, Pages 995–1009.
- [B1994] W. G. C. Boyd, Gamma Function Asymptotics by an Extension of the Method of Steepest Descents, Proceedings: Mathematical and Physical Sciences, Vol. 447, No. 1931 (Dec. 8, 1994),pp. 609-630.
- [B1950] N. C. de Bruijn, The roots of trigonometric integrals, Duke J. Math. 17 (1950), 197–226.
- [CSV1994] G. Csordas, W. Smith, R. S. Varga, Lehmer pairs of zeros, the de Bruijn-Newman constant Λ, and the Riemann hypothesis, Constr. Approx. 10 (1994), no. 1, 107–129.
- [G2004] Gourdon, Xavier (2004), The [math]10^{13}[/math] first zeros of the Riemann Zeta function, and zeros computation at very large height
- [KKL2009] H. Ki, Y. O. Kim, and J. Lee, On the de Bruijn-Newman constant, Advances in Mathematics, 22 (2009), 281–306. Citeseer
- [N1976] C. M. Newman, Fourier transforms with only real zeroes, Proc. Amer. Math. Soc. 61 (1976), 246–251.
- [P2017] D. J. Platt, Isolating some non-trivial zeros of zeta, Math. Comp. 86 (2017), 2449-2467.
- [P1992] G. Pugh, The Riemann-Siegel formula and large scale computations of the Riemann zeta function, M.Sc. Thesis, U. British Columbia, 1992.
- [RT2018] B. Rodgers, T. Tao, The de Bruijn-Newman constant is non-negative, preprint. arXiv:1801.05914
- [T1986] E. C. Titchmarsh, The theory of the Riemann zeta-function. Second edition. Edited and with a preface by D. R. Heath-Brown. The Clarendon Press, Oxford University Press, New York, 1986. pdf