# Difference between revisions of "Main Page"

Jump to: navigation, search

## The Problem

The basic problem to be considered by the Polymath1 project is to explore a particular combinatorial approach to the density Hales-Jewett theorem for k=3 (DHJ(3)), suggested by Tim Gowers. The original proof of DHJ(3) used arguments from ergodic theory.

## Useful background materials

Here is some background to the project. There is also a general discussion on massively collaborative "polymath" projects. This is a cheatsheet for editing the wiki. Finally, here is the general Wiki user's guide.

## Threads and further problems

Here is a further list of blog posts related to the Polymath1 project. Here is wordpress's list. Here is a timeline of progress so far.

A spreadsheet containing the latest upper and lower bounds for $c_n$ can be found here. Here are the proofs of our upper and lower bounds for these constants.

We are also collecting bounds for Fujimura's problem, motivated by a hyper-optimistic conjecture.

There is also a chance that we will be able to improve the known bounds on Moser's cube problem or the Kakeya problem.

Here are some unsolved problems arising from the above threads.

Here is a tidy problem page.

## Proof strategies

It is natural to look for strategies based on one of the following:

## Related theorems

All these theorems are worth knowing. The most immediately relevant are Roth's theorem, Sperner's theorem, Szemerédi's regularity lemma and the triangle removal lemma, but some of the others could well come into play as well.

## Bibliography

Here is a Bibliography of relevant papers in the field.

## How to help out

There are a number of ways that even casual participants can help contribute to the Polymath1 project:

• Expand the bibliography
• Join the metadiscussion thread
• Add some more Ramsey theorems to this wiki; one could hope to flesh out this wiki into a Ramsey theory resource at some point.
• Suggest a logo for this wiki!
• Suggest a way to speed up our genetic algorithm
• Point out places where the exposition could be improved
• Add to this list