Outline of second paper

From Polymath1Wiki

Jump to: navigation, search

Here is a proposed outline of the second paper, which will focus on the new bounds on DHJ(3) and Moser numbers, and related quantities.

Contents

Metadata

Abstract

(A draft proposal - please edit)

For any n \geq 0 and k \geq 1, the density Hales-Jewett number cn,k is defined as the size of the largest subset of the cube [k]^n := \{1,\ldots,k\}^n which contains no combinatorial line; similarly, the Moser number c'n,k is the largest subset of the cube [k]n which contains no geometric line. A deep theorem of Furstenberg and Katznelson [cite] shows that cn,k = o(kn) as n \to \infty (which implies a similar claim for c'n,k; this is already non-trivial for k = 3. Several new proofs of this result have also been recently established [cite Polymath], [cite Austin].

Using both human and computer-assisted arguments, we compute several values of cn,k and c'n,k for small n,k. For instance the sequence cn,3 for n=0,\ldots,6 is 1,2,6,18,52,150,450, while the sequence c'n,3 for n=0,\ldots,6 is 1,2,6,16,43,124,353. We also establish some results for higher k, showing for instance that an analogue of the LYM inequality (which relates to the k = 2 case) does not hold for higher k.

Sections

Introduction

Basic definitions. Definitions and notational conventions include

  • [k] = {1, 2, ..., k}
  • Subsets of [k]^n are called A
  • definition of combinatorial line, geometric line
  • Hales-Jewett numbers, Moser numbers

History of and motivation for the problem:

  • Sperner's theorem
  • Density Hales-Jewett theorem, including new proofs
  • Review literature on Moser problem

New results

  • Computation of several values of cn,3
  • Computation of several values of c'n,3
  • Asymptotic lower bounds for cn,k
  • Genetic algorithm lower bounds
  • Some bounds for cn,k for low n and large k
  • Connection between Moser(2k) and DHJ(k)
  • Hyper-optimistic conjecture, and its failure
  • New bounds for colouring Hales-Jewett numbers
  • Kakeya problem for Z_3^n

Lower bounds for density Hales-Jewett

Fujimura implies DHJ lower bounds; some selected numerics (e.g. lower bounds up to 10 dimensions, plus a few dimensions afterwards).

The precise asymptotic bound of c_{n,k} > C k^{n - \alpha(k)\sqrt[\ell]{\log n}+\beta(k) \log \log n}

Discussion of genetic algorithm

Low-dimensional density Hales-Jewett numbers

Very small n

n = 0,1,2 are trivial. But the six-point examples will get mentioned a lot.

For n = 3, one needs to classify the 17-point and 18-point examples.

n=4

One needs to classify the 50-point, 51-point, and 52-point examples.

n=5

This is the big section, showing there are no 151-point examples.

n=6

Easy corollary of n=5 theory

Higher k DHJ numbers

Exact computations of c2,k,c3,k

Connection between Moser(n,2k) and DHJ(n,k)

Numerics

Failure of hyper-optimistic conjecture

Lower bounds for Moser

Using Gamma sets to get lower bounds

Adding extra points from degenerate triangles

Higher k; Implications between Moser and DHJ

Moser in low dimensions

There is some general slicing lemma that needs to be proved here that allows inequalities for low-dim Moser to imply inequalities for higher dim.

For n=0,1,2 the theory is trivial.

For n=3 we need the classification of Pareto optimal configurations etc. So far this is only done by computer brute force search; we may have to find a human version.

n=4 theory: include both computer results and human results

n=5: we have a proof using the n=4 computer data; we should keep looking for a purely human proof.

n=6: we can give the partial results we have.

Fujimura's problem

Coloring DHJ

Files

The above are the master copies of the LaTeX files. Below are various compiled versions of the source:

Personal tools