Difference between revisions of "Scanning code"

From Polymath1Wiki
Jump to: navigation, search
 
Line 1,472: Line 1,472:
  
  
#define MAX_PARETO 26   // at most 26 pareto-optimals per forbidden set
+
#define MAX_PARETO 27   // at most 27 pareto-optimals per forbidden set
 
short int table[144][16384][MAX_PARETO];
 
short int table[144][16384][MAX_PARETO];
  

Latest revision as of 18:34, 12 June 2009

// Computes Pareto-optimal 4D Moser statistics.

  1. include <stdio.h>
  2. include <stdlib.h>
  3. include <string.h>
  4. include <time.h>
  1. define NUM_LINES_3D 25 // 25 non-horizontal lines in [3]^3

// the bitmasks of the 25 lines in [3]^3 const long line_bitmasks[NUM_LINES_3D] = {262657l,263172l,266304l,270592l,525314l,532608l,1049601l,1050628l,1056832l,1065216l,2101256l,2105376l,4202512l,8396808l,8405024l,16781313l,16785412l,16810048l,16843008l,33562626l,33620096l,67117057l,67125252l,67174464l,67240192l};


/* stat[i] is 0,1,2,3 depending on whether i (represented base 3) is of type a,b,c,d. */

const int stat[27] = {0,1,0, 1,2,1, 0,1,0,

                     1,2,1, 2,3,2, 1,2,1,

0,1,0, 1,2,1, 0,1,0};


long *data[256]; // data[a][i] will be the i^th Moser sets with a-signature a short int *datastat[256]; // datastat[a][i] will be the statistics of the i^th Moset set with a-signature a

long numstat[9][13][7][2]; /* numstat[a][b][c][d] is the number of Moser sets with statistics (a,b,c,d) */

  1. define NUM_PARETO 499 // number of feasible stats

int alist[NUM_PARETO], clist[NUM_PARETO], blist[NUM_PARETO], dlist[NUM_PARETO]; // ordered list of feasible stats int statlabel[9][13][7][2]; // statlabel[a][b][c][d] is the index of statistic (a,b,c,d) (if it is feasible)

  1. define NUM_APAIRS 391 // 391 pairs (a1,a2) to check

int a1[NUM_APAIRS], a2[NUM_APAIRS]; // the pairs (a1,a2) we will loop over int astatnum[256]; // astatnum[a] is how many 3D Moser sets there are with a-signature a


void init_numstat(void) // This was precomputed

{
	int a,b,c,d,i,s[4];

/* Initialise numstat */ for (a=0; a<9; a++) for (b=0; b<13; b++) for (c=0; c<7; c++) for (d=0; d<2; d++) numstat[a][b][c][d]=0;

   numstat[0][0][0][0] = 1;
   numstat[0][0][0][1] = 1;
   numstat[0][0][6][0] = 1;
   numstat[0][12][0][0] = 1;
   numstat[8][0][0][0] = 1;
   numstat[4][12][0][0] = 2;
   numstat[0][0][1][0] = 6;
   numstat[0][0][1][1] = 6;
   numstat[0][0][5][0] = 6;
   numstat[4][0][5][0] = 6;
   numstat[0][0][3][1] = 8;
   numstat[0][6][6][0] = 8;
   numstat[0][9][3][0] = 8;
   numstat[1][0][0][0] = 8;
   numstat[1][0][0][1] = 8;
   numstat[1][0][6][0] = 8;
   numstat[1][12][0][0] = 8;
   numstat[3][12][0][0] = 8;
   numstat[5][9][0][0] = 8;
   numstat[7][0][0][0] = 8;
   numstat[7][3][0][0] = 8;
   numstat[0][0][2][1] = 12;
   numstat[0][1][0][0] = 12;
   numstat[0][1][0][1] = 12;
   numstat[0][1][6][0] = 12;
   numstat[0][11][0][0] = 12;
   numstat[6][0][2][0] = 12;
   numstat[0][0][2][0] = 15;
   numstat[0][0][4][0] = 15;
   numstat[2][0][6][0] = 16;
   numstat[2][12][0][0] = 16;
   numstat[4][0][0][1] = 16;
   numstat[6][6][0][0] = 16;
   numstat[0][0][3][0] = 20;
   numstat[0][10][1][0] = 24;
   numstat[2][0][0][1] = 24;
   numstat[4][11][0][0] = 24;
   numstat[4][9][2][0] = 24;
   numstat[5][0][3][0] = 24;
   numstat[6][0][1][0] = 24;
   numstat[7][1][0][0] = 24;
   numstat[7][2][0][0] = 24;
   numstat[2][0][0][0] = 28;
   numstat[6][0][0][0] = 28;
   numstat[3][0][0][1] = 32;
   numstat[3][9][3][0] = 32;
   numstat[4][0][3][1] = 32;
   numstat[0][5][6][0] = 48;
   numstat[0][9][2][0] = 48;
   numstat[1][0][1][0] = 48;
   numstat[1][0][1][1] = 48;
   numstat[1][0][5][0] = 48;
   numstat[3][0][5][0] = 48;
   numstat[4][1][5][0] = 48;
   numstat[4][4][5][0] = 48;
   numstat[4][6][2][1] = 48;
   numstat[6][3][2][0] = 48;
   numstat[6][4][1][0] = 48;
   numstat[0][2][6][0] = 54;
   numstat[4][0][1][1] = 54;
   numstat[3][0][0][0] = 56;
   numstat[5][0][0][0] = 56;
   numstat[0][2][0][1] = 60;
   numstat[4][0][4][0] = 60;
   numstat[6][1][2][0] = 60;
   numstat[0][6][0][1] = 64;
   numstat[0][6][3][1] = 64;
   numstat[1][0][3][1] = 64;
   numstat[1][6][6][0] = 64;
   numstat[1][9][3][0] = 64;
   numstat[0][10][0][0] = 66;
   numstat[0][2][0][0] = 66;
   numstat[4][0][0][0] = 70;
   numstat[0][1][1][0] = 72;
   numstat[0][1][1][1] = 72;
   numstat[0][1][5][0] = 72;
   numstat[4][0][2][1] = 72;
   numstat[2][6][6][0] = 80;
   numstat[0][1][3][1] = 96;
   numstat[0][8][3][0] = 96;
   numstat[1][0][2][1] = 96;
   numstat[1][1][0][0] = 96;
   numstat[1][1][0][1] = 96;
   numstat[1][1][6][0] = 96;
   numstat[1][11][0][0] = 96;
   numstat[5][0][2][0] = 96;
   numstat[5][4][3][0] = 96;
   numstat[5][7][1][0] = 96;
   numstat[5][8][0][0] = 96;
   numstat[6][2][2][0] = 96;
   numstat[2][9][3][0] = 104;
   numstat[3][0][3][1] = 104;
   numstat[0][4][6][0] = 108;
   numstat[0][6][5][0] = 108;
   numstat[0][7][4][0] = 108;
   numstat[2][0][5][0] = 108;
   numstat[6][5][0][0] = 108;
   numstat[0][3][6][0] = 112;
   numstat[3][6][3][1] = 112;
   numstat[1][0][2][0] = 120;
   numstat[1][0][4][0] = 120;
   numstat[3][11][0][0] = 120;
   numstat[4][6][1][1] = 120;
   numstat[5][0][1][0] = 120;
   numstat[5][6][2][0] = 120;
   numstat[6][1][1][0] = 120;
   numstat[2][0][1][1] = 132;
   numstat[4][2][5][0] = 132;
   numstat[4][6][4][0] = 132;
   numstat[0][1][2][1] = 144;
   numstat[2][0][3][1] = 144;
   numstat[3][0][1][1] = 144;
   numstat[4][1][0][1] = 144;
   numstat[4][3][5][0] = 144;
   numstat[4][9][1][0] = 144;
   numstat[2][0][1][0] = 156;
   numstat[6][1][0][0] = 156;
   numstat[0][3][0][1] = 160;
   numstat[1][0][3][0] = 160;
   numstat[4][10][0][0] = 162;
   numstat[5][1][3][0] = 168;
   numstat[6][3][1][0] = 168;
   numstat[0][1][2][0] = 180;
   numstat[0][1][4][0] = 180;
   numstat[2][1][6][0] = 180;
   numstat[0][5][0][1] = 192;
   numstat[1][10][1][0] = 192;
   numstat[3][10][1][0] = 192;
   numstat[4][4][3][1] = 192;
   numstat[2][11][0][0] = 204;
   numstat[4][0][3][0] = 212;
   numstat[0][6][1][1] = 216;
   numstat[0][6][2][1] = 216;
   numstat[0][9][1][0] = 216;
   numstat[3][0][2][1] = 216;
   numstat[4][6][0][1] = 216;
   numstat[6][2][1][0] = 216;
   numstat[0][3][0][0] = 220;
   numstat[0][9][0][0] = 220;
   numstat[0][1][3][0] = 240;
   numstat[0][4][0][1] = 240;
   numstat[2][0][2][1] = 240;
   numstat[3][0][4][0] = 240;
   numstat[4][0][1][0] = 246;
   numstat[3][0][1][0] = 264;
   numstat[3][6][5][0] = 264;
   numstat[4][1][3][1] = 264;
   numstat[2][1][0][1] = 276;
   numstat[4][7][3][0] = 288;
   numstat[2][0][4][0] = 300;
   numstat[6][4][0][0] = 300;
   numstat[3][9][2][0] = 312;
   numstat[2][1][0][0] = 324;
   numstat[0][2][5][0] = 336;
   numstat[3][1][0][1] = 336;
   numstat[4][0][2][0] = 336;
   numstat[0][2][1][1] = 348;
   numstat[2][0][2][0] = 360;
   numstat[4][5][2][1] = 360;
   numstat[6][2][0][0] = 360;
   numstat[0][2][1][0] = 384;
   numstat[0][5][3][1] = 384;
   numstat[1][5][6][0] = 384;
   numstat[1][9][2][0] = 384;
   numstat[2][10][1][0] = 384;
   numstat[4][8][2][0] = 384;
   numstat[5][3][3][0] = 384;
   numstat[5][2][3][0] = 408;
   numstat[0][2][3][1] = 432;
   numstat[1][2][6][0] = 432;
   numstat[3][7][4][0] = 432;
   numstat[5][1][0][0] = 432;
   numstat[2][0][3][0] = 440;
   numstat[6][3][0][0] = 440;
   numstat[4][1][1][1] = 456;
   numstat[0][8][2][0] = 480;
   numstat[1][2][0][1] = 480;
   numstat[3][8][3][0] = 480;
   numstat[3][0][3][0] = 488;
   numstat[0][4][0][0] = 495;
   numstat[0][8][0][0] = 495;
   numstat[0][5][5][0] = 504;
   numstat[3][0][2][0] = 504;
   numstat[3][1][5][0] = 504;
   numstat[5][7][0][0] = 504;
   numstat[1][6][0][1] = 512;
   numstat[1][6][3][1] = 512;
   numstat[4][1][4][0] = 516;
   numstat[1][10][0][0] = 528;
   numstat[1][2][0][0] = 528;
   numstat[2][5][6][0] = 528;
   numstat[4][2][0][1] = 540;
   numstat[1][1][1][0] = 576;
   numstat[1][1][1][1] = 576;
   numstat[1][1][5][0] = 576;
   numstat[3][1][0][0] = 600;
   numstat[4][1][2][1] = 600;
   numstat[5][5][2][0] = 648;
   numstat[4][1][0][0] = 660;
   numstat[0][2][2][1] = 672;
   numstat[4][5][4][0] = 672;
   numstat[5][1][2][0] = 696;
   numstat[2][9][2][0] = 720;
   numstat[5][6][1][0] = 720;
   numstat[4][2][3][1] = 744;
   numstat[4][5][1][1] = 744;
   numstat[2][2][6][0] = 756;
   numstat[0][3][5][0] = 768;
   numstat[0][7][3][0] = 768;
   numstat[1][1][3][1] = 768;
   numstat[1][8][3][0] = 768;
   numstat[2][6][3][1] = 768;
   numstat[4][9][0][0] = 772;
   numstat[0][5][0][0] = 792;
   numstat[0][5][1][1] = 792;
   numstat[0][7][0][0] = 792;
   numstat[4][3][3][1] = 792;
   numstat[4][5][0][1] = 792;
   numstat[0][6][4][0] = 816;
   numstat[3][10][0][0] = 816;
   numstat[0][3][1][1] = 864;
   numstat[0][4][3][1] = 864;
   numstat[1][4][6][0] = 864;
   numstat[1][6][5][0] = 864;
   numstat[1][7][4][0] = 864;
   numstat[0][2][4][0] = 870;
   numstat[0][8][1][0] = 870;
   numstat[5][1][1][0] = 888;
   numstat[0][4][5][0] = 894;
   numstat[0][3][3][1] = 896;
   numstat[1][3][6][0] = 896;
   numstat[3][6][0][1] = 896;
   numstat[0][6][0][0] = 924;
   numstat[0][2][2][0] = 930;
   numstat[0][5][2][1] = 1008;
   numstat[3][6][2][1] = 1008;
   numstat[3][1][3][1] = 1056;
   numstat[3][5][3][1] = 1056;
   numstat[4][3][0][1] = 1088;
   numstat[1][1][2][1] = 1152;
   numstat[2][6][0][1] = 1152;
   numstat[0][4][1][1] = 1158;
   numstat[2][10][0][0] = 1188;
   numstat[0][2][3][0] = 1200;
   numstat[0][3][1][0] = 1200;
   numstat[2][1][5][0] = 1224;
   numstat[4][4][0][1] = 1254;
   numstat[1][3][0][1] = 1280;
   numstat[2][4][6][0] = 1296;
   numstat[2][6][5][0] = 1296;
   numstat[2][2][0][1] = 1320;
   numstat[2][8][3][0] = 1344;
   numstat[2][7][4][0] = 1404;
   numstat[4][8][1][0] = 1416;
   numstat[1][1][2][0] = 1440;
   numstat[1][1][4][0] = 1440;
   numstat[4][4][2][1] = 1440;
   numstat[2][3][6][0] = 1456;
   numstat[3][2][0][1] = 1464;
   numstat[5][2][0][0] = 1464;
   numstat[3][1][1][1] = 1488;
   numstat[4][2][1][1] = 1488;
   numstat[2][1][1][1] = 1512;
   numstat[5][6][0][0] = 1512;
   numstat[0][3][2][1] = 1536;
   numstat[1][5][0][1] = 1536;
   numstat[3][5][5][0] = 1608;
   numstat[2][1][3][1] = 1632;
   numstat[4][2][4][0] = 1662;
   numstat[2][2][0][0] = 1716;
   numstat[1][6][1][1] = 1728;
   numstat[1][6][2][1] = 1728;
   numstat[1][9][1][0] = 1728;
   numstat[1][3][0][0] = 1760;
   numstat[1][9][0][0] = 1760;
   numstat[0][4][2][1] = 1788;
   numstat[2][1][1][0] = 1800;
   numstat[4][4][4][0] = 1806;
   numstat[3][6][1][1] = 1824;
   numstat[4][2][2][1] = 1824;
   numstat[5][4][2][0] = 1824;
   numstat[4][1][3][0] = 1896;
   numstat[1][1][3][0] = 1920;
   numstat[1][4][0][1] = 1920;
   numstat[4][4][1][1] = 1920;
   numstat[0][7][2][0] = 1932;
   numstat[5][2][2][0] = 1944;
   numstat[3][2][5][0] = 2016;
   numstat[0][7][1][0] = 2064;
   numstat[4][6][3][0] = 2096;
   numstat[3][9][1][0] = 2160;
   numstat[0][3][4][0] = 2172;
   numstat[3][1][2][1] = 2208;
   numstat[0][5][4][0] = 2232;
   numstat[4][1][1][0] = 2280;
   numstat[5][5][1][0] = 2352;
   numstat[4][3][1][1] = 2376;
   numstat[0][4][1][0] = 2436;
   numstat[4][3][2][1] = 2472;
   numstat[4][3][4][0] = 2496;
   numstat[3][1][4][0] = 2520;
   numstat[4][8][0][0] = 2634;
   numstat[4][7][2][0] = 2640;
   numstat[5][3][2][0] = 2640;
   numstat[1][2][5][0] = 2688;
   numstat[0][6][3][0] = 2696;
   numstat[0][3][2][0] = 2712;
   numstat[5][2][1][0] = 2712;
   numstat[2][1][2][1] = 2736;
   numstat[1][2][1][1] = 2784;
   numstat[4][2][0][0] = 2802;
   numstat[3][1][1][0] = 2808;
   numstat[5][3][0][0] = 2856;
   numstat[5][5][0][0] = 2856;
   numstat[3][2][0][0] = 2928;
   numstat[0][4][4][0] = 2988;
   numstat[2][6][2][1] = 3024;
   numstat[1][2][1][0] = 3072;
   numstat[1][5][3][1] = 3072;
   numstat[3][5][0][1] = 3072;
   numstat[4][1][2][0] = 3072;
   numstat[0][6][1][0] = 3192;
   numstat[0][3][3][0] = 3248;
   numstat[3][9][0][0] = 3320;
   numstat[0][5][1][0] = 3360;
   numstat[2][3][0][1] = 3360;
   numstat[3][3][0][1] = 3392;
   numstat[2][1][4][0] = 3420;
   numstat[1][2][3][1] = 3456;
   numstat[2][6][1][1] = 3456;
   numstat[5][4][0][0] = 3528;
   numstat[3][4][5][0] = 3600;
   numstat[2][5][0][1] = 3648;
   numstat[2][9][1][0] = 3672;
   numstat[1][8][2][0] = 3840;
   numstat[3][3][5][0] = 3840;
   numstat[3][2][3][1] = 3888;
   numstat[3][8][2][0] = 3936;
   numstat[1][4][0][0] = 3960;
   numstat[1][8][0][0] = 3960;
   numstat[3][4][3][1] = 3960;
   numstat[1][5][5][0] = 4032;
   numstat[2][1][2][0] = 4140;
   numstat[3][6][4][0] = 4176;
   numstat[2][9][0][0] = 4180;
   numstat[5][4][1][0] = 4224;
   numstat[0][6][2][0] = 4248;
   numstat[3][4][0][1] = 4416;
   numstat[5][3][1][0] = 4440;
   numstat[2][4][0][1] = 4800;
   numstat[0][4][2][0] = 4911;
   numstat[0][5][3][0] = 4920;
   numstat[2][5][3][1] = 4992;
   numstat[2][1][3][0] = 5040;
   numstat[3][7][3][0] = 5112;
   numstat[3][1][3][0] = 5136;
   numstat[0][4][3][0] = 5172;
   numstat[3][1][2][0] = 5328;
   numstat[1][2][2][1] = 5376;
   numstat[2][2][5][0] = 5376;
   numstat[2][3][0][0] = 5500;
   numstat[0][5][2][0] = 5712;
   numstat[3][5][2][1] = 6096;
   numstat[3][2][1][1] = 6120;
   numstat[1][3][5][0] = 6144;
   numstat[1][7][3][0] = 6144;
   numstat[3][3][3][1] = 6176;
   numstat[1][5][0][0] = 6336;
   numstat[1][5][1][1] = 6336;
   numstat[1][7][0][0] = 6336;
   numstat[4][7][1][0] = 6336;
   numstat[4][7][0][0] = 6384;
   numstat[1][6][4][0] = 6528;
   numstat[2][5][5][0] = 6552;
   numstat[4][2][3][0] = 6720;
   numstat[4][5][3][0] = 6720;
   numstat[1][3][1][1] = 6912;
   numstat[1][4][3][1] = 6912;
   numstat[2][2][3][1] = 6912;
   numstat[1][2][4][0] = 6960;
   numstat[1][8][1][0] = 6960;
   numstat[2][2][1][1] = 6960;
   numstat[4][3][0][0] = 7064;
   numstat[1][4][5][0] = 7152;
   numstat[1][3][3][1] = 7168;
   numstat[1][6][0][0] = 7392;
   numstat[1][2][2][0] = 7440;
   numstat[2][8][2][0] = 7680;
   numstat[3][5][1][1] = 8016;
   numstat[1][5][2][1] = 8064;
   numstat[3][2][2][1] = 8592;
   numstat[3][3][0][0] = 8600;
   numstat[3][8][0][0] = 9000;
   numstat[4][2][1][0] = 9132;
   numstat[2][2][1][0] = 9216;
   numstat[1][4][1][1] = 9264;
   numstat[1][2][3][0] = 9600;
   numstat[1][3][1][0] = 9600;
   numstat[4][6][2][0] = 9804;
   numstat[2][8][0][0] = 9900;
   numstat[3][2][4][0] = 10464;
   numstat[3][8][1][0] = 10776;
   numstat[4][6][0][0] = 11004;
   numstat[2][6][4][0] = 11424;
   numstat[2][3][5][0] = 11520;
   numstat[2][7][3][0] = 11520;
   numstat[4][2][2][0] = 11652;
   numstat[4][4][0][0] = 11742;
   numstat[2][4][0][0] = 11880;
   numstat[4][4][3][0] = 12000;
   numstat[2][2][2][1] = 12096;
   numstat[2][4][3][1] = 12096;
   numstat[4][3][3][0] = 12120;
   numstat[1][3][2][1] = 12288;
   numstat[2][4][5][0] = 12516;
   numstat[3][3][1][1] = 12768;
   numstat[3][2][1][0] = 13152;
   numstat[2][3][3][1] = 13440;
   numstat[2][5][1][1] = 13464;
   numstat[4][5][0][0] = 13512;
   numstat[3][4][1][1] = 14208;
   numstat[1][4][2][1] = 14304;
   numstat[3][4][2][1] = 14352;
   numstat[3][5][4][0] = 14688;
   numstat[2][5][2][1] = 15120;
   numstat[1][7][2][0] = 15456;
   numstat[2][2][4][0] = 15660;
   numstat[2][8][1][0] = 15660;
   numstat[3][3][2][1] = 15888;
   numstat[2][3][1][1] = 16416;
   numstat[1][7][1][0] = 16512;
   numstat[4][6][1][0] = 16536;
   numstat[2][7][0][0] = 16632;
   numstat[3][4][0][0] = 16920;
   numstat[3][7][0][0] = 17136;
   numstat[1][3][4][0] = 17376;
   numstat[1][5][4][0] = 17856;
   numstat[2][5][0][0] = 18216;
   numstat[1][4][1][0] = 19488;
   numstat[3][7][2][0] = 19896;
   numstat[2][6][0][0] = 20328;
   numstat[2][2][2][0] = 20460;
   numstat[4][3][1][0] = 20760;
   numstat[2][4][1][1] = 20844;
   numstat[1][6][3][0] = 21568;
   numstat[4][5][2][0] = 21576;
   numstat[1][3][2][0] = 21696;
   numstat[3][3][4][0] = 21936;
   numstat[3][2][3][0] = 22176;
   numstat[3][6][3][0] = 22904;
   numstat[3][5][0][0] = 23472;
   numstat[3][6][0][0] = 23520;
   numstat[1][4][4][0] = 23904;
   numstat[4][3][2][0] = 23904;
   numstat[3][2][2][0] = 23952;
   numstat[2][2][3][0] = 24000;
   numstat[3][4][4][0] = 24672;
   numstat[1][6][1][0] = 25536;
   numstat[1][3][3][0] = 25984;
   numstat[2][3][2][1] = 26112;
   numstat[1][5][1][0] = 26880;
   numstat[4][5][1][0] = 27360;
   numstat[2][3][1][0] = 27600;
   numstat[2][4][2][1] = 28608;
   numstat[4][4][2][0] = 29040;
   numstat[4][4][1][0] = 29550;
   numstat[3][7][1][0] = 31272;
   numstat[2][7][2][0] = 32844;
   numstat[2][5][4][0] = 33480;
   numstat[1][6][2][0] = 33984;
   numstat[3][3][1][0] = 35736;
   numstat[2][3][4][0] = 36924;
   numstat[2][7][1][0] = 39216;
   numstat[1][4][2][0] = 39288;
   numstat[1][5][3][0] = 39360;
   numstat[1][4][3][0] = 41376;
   numstat[2][6][3][0] = 43136;
   numstat[1][5][2][0] = 45696;
   numstat[2][4][4][0] = 47808;
   numstat[3][3][3][0] = 50912;
   numstat[3][5][3][0] = 52272;
   numstat[2][4][1][0] = 53592;
   numstat[3][6][2][0] = 54216;
   numstat[2][3][2][0] = 56952;
   numstat[3][6][1][0] = 58368;
   numstat[3][3][2][0] = 59952;
   numstat[2][3][3][0] = 61712;
   numstat[3][4][1][0] = 62400;
   numstat[2][6][1][0] = 63840;
   numstat[3][4][3][0] = 67416;
   numstat[2][5][1][0] = 70560;
   numstat[3][5][1][0] = 73176;
   numstat[2][6][2][0] = 76464;
   numstat[2][5][3][0] = 83640;
   numstat[3][5][2][0] = 88944;
   numstat[3][4][2][0] = 91824;
   numstat[2][4][3][0] = 93096;
   numstat[2][4][2][0] = 98220;
   numstat[2][5][2][0] = 108528;


// compute statlabel;

   int count=0;

for (a=0; a<9; a++) for (b=0; b<13; b++) for (c=0; c<7; c++) for (d=0; d<2; d++) if (numstat[a][b][c][d]) { alist[count] = a; blist[count] = b; clist[count] = c; dlist[count] = d; statlabel[a][b][c][d] = count; count++; } else statlabel[a][b][c][d] = -1;


i=0;


 a1[i] = 0; a2[i] = 0; i++;
 a1[i] = 0; a2[i] = 15; i++;
 a1[i] = 0; a2[i] = 23; i++;
 a1[i] = 0; a2[i] = 27; i++;
 a1[i] = 0; a2[i] = 30; i++;
 a1[i] = 0; a2[i] = 31; i++;
 a1[i] = 0; a2[i] = 60; i++;
 a1[i] = 0; a2[i] = 61; i++;
 a1[i] = 0; a2[i] = 63; i++;
 a1[i] = 0; a2[i] = 105; i++;
 a1[i] = 0; a2[i] = 107; i++;
 a1[i] = 0; a2[i] = 111; i++;
 a1[i] = 0; a2[i] = 126; i++;
 a1[i] = 0; a2[i] = 127; i++;
 a1[i] = 0; a2[i] = 255; i++;
 a1[i] = 1; a2[i] = 22; i++;
 a1[i] = 1; a2[i] = 23; i++;
 a1[i] = 2; a2[i] = 21; i++;
 a1[i] = 2; a2[i] = 22; i++;
 a1[i] = 2; a2[i] = 23; i++;
 a1[i] = 1; a2[i] = 30; i++;
 a1[i] = 1; a2[i] = 31; i++;
 a1[i] = 1; a2[i] = 44; i++;
 a1[i] = 2; a2[i] = 29; i++;
 a1[i] = 1; a2[i] = 47; i++;
 a1[i] = 1; a2[i] = 60; i++;
 a1[i] = 1; a2[i] = 61; i++;
 a1[i] = 1; a2[i] = 62; i++;
 a1[i] = 1; a2[i] = 63; i++;
 a1[i] = 1; a2[i] = 104; i++;
 a1[i] = 1; a2[i] = 105; i++;
 a1[i] = 1; a2[i] = 106; i++;
 a1[i] = 1; a2[i] = 107; i++;
 a1[i] = 1; a2[i] = 110; i++;
 a1[i] = 1; a2[i] = 111; i++;
 a1[i] = 1; a2[i] = 126; i++;
 a1[i] = 1; a2[i] = 127; i++;
 a1[i] = 8; a2[i] = 19; i++;
 a1[i] = 1; a2[i] = 134; i++;
 a1[i] = 8; a2[i] = 23; i++;
 a1[i] = 1; a2[i] = 137; i++;
 a1[i] = 1; a2[i] = 139; i++;
 a1[i] = 1; a2[i] = 143; i++;
 a1[i] = 1; a2[i] = 150; i++;
 a1[i] = 1; a2[i] = 151; i++;
 a1[i] = 1; a2[i] = 152; i++;
 a1[i] = 1; a2[i] = 153; i++;
 a1[i] = 1; a2[i] = 154; i++;
 a1[i] = 1; a2[i] = 155; i++;
 a1[i] = 1; a2[i] = 158; i++;
 a1[i] = 1; a2[i] = 159; i++;
 a1[i] = 1; a2[i] = 168; i++;
 a1[i] = 1; a2[i] = 169; i++;
 a1[i] = 1; a2[i] = 170; i++;
 a1[i] = 1; a2[i] = 171; i++;
 a1[i] = 1; a2[i] = 172; i++;
 a1[i] = 1; a2[i] = 173; i++;
 a1[i] = 1; a2[i] = 174; i++;
 a1[i] = 1; a2[i] = 175; i++;
 a1[i] = 1; a2[i] = 188; i++;
 a1[i] = 1; a2[i] = 189; i++;
 a1[i] = 1; a2[i] = 190; i++;
 a1[i] = 1; a2[i] = 191; i++;
 a1[i] = 1; a2[i] = 232; i++;
 a1[i] = 1; a2[i] = 233; i++;
 a1[i] = 1; a2[i] = 234; i++;
 a1[i] = 1; a2[i] = 235; i++;
 a1[i] = 1; a2[i] = 238; i++;
 a1[i] = 1; a2[i] = 239; i++;
 a1[i] = 1; a2[i] = 254; i++;
 a1[i] = 1; a2[i] = 255; i++;
 a1[i] = 22; a2[i] = 22; i++;
 a1[i] = 3; a2[i] = 61; i++;
 a1[i] = 3; a2[i] = 63; i++;
 a1[i] = 3; a2[i] = 86; i++;
 a1[i] = 3; a2[i] = 87; i++;
 a1[i] = 6; a2[i] = 52; i++;
 a1[i] = 6; a2[i] = 53; i++;
 a1[i] = 5; a2[i] = 58; i++;
 a1[i] = 6; a2[i] = 55; i++;
 a1[i] = 3; a2[i] = 94; i++;
 a1[i] = 3; a2[i] = 95; i++;
 a1[i] = 3; a2[i] = 104; i++;
 a1[i] = 3; a2[i] = 105; i++;
 a1[i] = 6; a2[i] = 58; i++;
 a1[i] = 3; a2[i] = 107; i++;
 a1[i] = 3; a2[i] = 108; i++;
 a1[i] = 3; a2[i] = 109; i++;
 a1[i] = 6; a2[i] = 62; i++;
 a1[i] = 3; a2[i] = 111; i++;
 a1[i] = 3; a2[i] = 124; i++;
 a1[i] = 3; a2[i] = 125; i++;
 a1[i] = 3; a2[i] = 126; i++;
 a1[i] = 3; a2[i] = 127; i++;
 a1[i] = 3; a2[i] = 192; i++;
 a1[i] = 12; a2[i] = 49; i++;
 a1[i] = 12; a2[i] = 51; i++;
 a1[i] = 3; a2[i] = 197; i++;
 a1[i] = 3; a2[i] = 198; i++;
 a1[i] = 12; a2[i] = 55; i++;
 a1[i] = 3; a2[i] = 207; i++;
 a1[i] = 3; a2[i] = 212; i++;
 a1[i] = 3; a2[i] = 213; i++;
 a1[i] = 3; a2[i] = 214; i++;
 a1[i] = 3; a2[i] = 215; i++;
 a1[i] = 3; a2[i] = 216; i++;
 a1[i] = 3; a2[i] = 217; i++;
 a1[i] = 3; a2[i] = 219; i++;
 a1[i] = 3; a2[i] = 220; i++;
 a1[i] = 3; a2[i] = 221; i++;
 a1[i] = 3; a2[i] = 222; i++;
 a1[i] = 3; a2[i] = 223; i++;
 a1[i] = 3; a2[i] = 252; i++;
 a1[i] = 3; a2[i] = 253; i++;
 a1[i] = 3; a2[i] = 255; i++;
 a1[i] = 6; a2[i] = 96; i++;
 a1[i] = 6; a2[i] = 97; i++;
 a1[i] = 20; a2[i] = 42; i++;
 a1[i] = 20; a2[i] = 43; i++;
 a1[i] = 21; a2[i] = 42; i++;
 a1[i] = 6; a2[i] = 103; i++;
 a1[i] = 6; a2[i] = 105; i++;
 a1[i] = 6; a2[i] = 107; i++;
 a1[i] = 6; a2[i] = 111; i++;
 a1[i] = 6; a2[i] = 114; i++;
 a1[i] = 6; a2[i] = 115; i++;
 a1[i] = 6; a2[i] = 118; i++;
 a1[i] = 6; a2[i] = 119; i++;
 a1[i] = 6; a2[i] = 120; i++;
 a1[i] = 6; a2[i] = 121; i++;
 a1[i] = 6; a2[i] = 122; i++;
 a1[i] = 6; a2[i] = 123; i++;
 a1[i] = 6; a2[i] = 126; i++;
 a1[i] = 6; a2[i] = 127; i++;
 a1[i] = 6; a2[i] = 144; i++;
 a1[i] = 9; a2[i] = 97; i++;
 a1[i] = 6; a2[i] = 147; i++;
 a1[i] = 6; a2[i] = 150; i++;
 a1[i] = 6; a2[i] = 151; i++;
 a1[i] = 6; a2[i] = 159; i++;
 a1[i] = 6; a2[i] = 176; i++;
 a1[i] = 6; a2[i] = 177; i++;
 a1[i] = 6; a2[i] = 178; i++;
 a1[i] = 6; a2[i] = 179; i++;
 a1[i] = 6; a2[i] = 180; i++;
 a1[i] = 6; a2[i] = 181; i++;
 a1[i] = 6; a2[i] = 182; i++;
 a1[i] = 6; a2[i] = 183; i++;
 a1[i] = 6; a2[i] = 185; i++;
 a1[i] = 6; a2[i] = 187; i++;
 a1[i] = 6; a2[i] = 189; i++;
 a1[i] = 6; a2[i] = 191; i++;
 a1[i] = 6; a2[i] = 240; i++;
 a1[i] = 6; a2[i] = 241; i++;
 a1[i] = 6; a2[i] = 242; i++;
 a1[i] = 6; a2[i] = 243; i++;
 a1[i] = 6; a2[i] = 246; i++;
 a1[i] = 6; a2[i] = 247; i++;
 a1[i] = 6; a2[i] = 249; i++;
 a1[i] = 6; a2[i] = 251; i++;
 a1[i] = 6; a2[i] = 255; i++;
 a1[i] = 7; a2[i] = 118; i++;
 a1[i] = 7; a2[i] = 119; i++;
 a1[i] = 7; a2[i] = 120; i++;
 a1[i] = 7; a2[i] = 121; i++;
 a1[i] = 7; a2[i] = 122; i++;
 a1[i] = 7; a2[i] = 123; i++;
 a1[i] = 7; a2[i] = 126; i++;
 a1[i] = 7; a2[i] = 127; i++;
 a1[i] = 7; a2[i] = 176; i++;
 a1[i] = 11; a2[i] = 113; i++;
 a1[i] = 24; a2[i] = 63; i++;
 a1[i] = 11; a2[i] = 116; i++;
 a1[i] = 11; a2[i] = 117; i++;
 a1[i] = 7; a2[i] = 182; i++;
 a1[i] = 7; a2[i] = 183; i++;
 a1[i] = 7; a2[i] = 188; i++;
 a1[i] = 7; a2[i] = 189; i++;
 a1[i] = 7; a2[i] = 191; i++;
 a1[i] = 7; a2[i] = 224; i++;
 a1[i] = 14; a2[i] = 113; i++;
 a1[i] = 7; a2[i] = 226; i++;
 a1[i] = 14; a2[i] = 115; i++;
 a1[i] = 7; a2[i] = 230; i++;
 a1[i] = 7; a2[i] = 231; i++;
 a1[i] = 7; a2[i] = 233; i++;
 a1[i] = 7; a2[i] = 235; i++;
 a1[i] = 7; a2[i] = 239; i++;
 a1[i] = 7; a2[i] = 240; i++;
 a1[i] = 7; a2[i] = 241; i++;
 a1[i] = 7; a2[i] = 242; i++;
 a1[i] = 7; a2[i] = 243; i++;
 a1[i] = 7; a2[i] = 246; i++;
 a1[i] = 7; a2[i] = 247; i++;
 a1[i] = 7; a2[i] = 248; i++;
 a1[i] = 7; a2[i] = 249; i++;
 a1[i] = 7; a2[i] = 250; i++;
 a1[i] = 7; a2[i] = 251; i++;
 a1[i] = 7; a2[i] = 254; i++;
 a1[i] = 7; a2[i] = 255; i++;
 a1[i] = 15; a2[i] = 240; i++;
 a1[i] = 15; a2[i] = 241; i++;
 a1[i] = 15; a2[i] = 243; i++;
 a1[i] = 15; a2[i] = 246; i++;
 a1[i] = 15; a2[i] = 247; i++;
 a1[i] = 15; a2[i] = 255; i++;
 a1[i] = 22; a2[i] = 104; i++;
 a1[i] = 22; a2[i] = 105; i++;
 a1[i] = 23; a2[i] = 104; i++;
 a1[i] = 22; a2[i] = 107; i++;
 a1[i] = 23; a2[i] = 106; i++;
 a1[i] = 22; a2[i] = 111; i++;
 a1[i] = 22; a2[i] = 126; i++;
 a1[i] = 22; a2[i] = 127; i++;
 a1[i] = 22; a2[i] = 129; i++;
 a1[i] = 24; a2[i] = 99; i++;
 a1[i] = 22; a2[i] = 134; i++;
 a1[i] = 24; a2[i] = 103; i++;
 a1[i] = 24; a2[i] = 105; i++;
 a1[i] = 24; a2[i] = 107; i++;
 a1[i] = 24; a2[i] = 110; i++;
 a1[i] = 24; a2[i] = 111; i++;
 a1[i] = 22; a2[i] = 150; i++;
 a1[i] = 22; a2[i] = 151; i++;
 a1[i] = 22; a2[i] = 152; i++;
 a1[i] = 25; a2[i] = 105; i++;
 a1[i] = 22; a2[i] = 154; i++;
 a1[i] = 25; a2[i] = 107; i++;
 a1[i] = 22; a2[i] = 158; i++;
 a1[i] = 22; a2[i] = 159; i++;
 a1[i] = 22; a2[i] = 169; i++;
 a1[i] = 22; a2[i] = 171; i++;
 a1[i] = 22; a2[i] = 172; i++;
 a1[i] = 26; a2[i] = 109; i++;
 a1[i] = 22; a2[i] = 174; i++;
 a1[i] = 26; a2[i] = 111; i++;
 a1[i] = 22; a2[i] = 188; i++;
 a1[i] = 22; a2[i] = 189; i++;
 a1[i] = 22; a2[i] = 190; i++;
 a1[i] = 22; a2[i] = 191; i++;
 a1[i] = 22; a2[i] = 233; i++;
 a1[i] = 22; a2[i] = 234; i++;
 a1[i] = 22; a2[i] = 235; i++;
 a1[i] = 22; a2[i] = 238; i++;
 a1[i] = 22; a2[i] = 239; i++;
 a1[i] = 22; a2[i] = 254; i++;
 a1[i] = 22; a2[i] = 255; i++;
 a1[i] = 23; a2[i] = 126; i++;
 a1[i] = 23; a2[i] = 127; i++;
 a1[i] = 23; a2[i] = 129; i++;
 a1[i] = 24; a2[i] = 115; i++;
 a1[i] = 24; a2[i] = 119; i++;
 a1[i] = 24; a2[i] = 121; i++;
 a1[i] = 24; a2[i] = 123; i++;
 a1[i] = 24; a2[i] = 126; i++;
 a1[i] = 24; a2[i] = 127; i++;
 a1[i] = 23; a2[i] = 150; i++;
 a1[i] = 23; a2[i] = 151; i++;
 a1[i] = 23; a2[i] = 152; i++;
 a1[i] = 25; a2[i] = 121; i++;
 a1[i] = 23; a2[i] = 154; i++;
 a1[i] = 25; a2[i] = 123; i++;
 a1[i] = 23; a2[i] = 158; i++;
 a1[i] = 23; a2[i] = 159; i++;
 a1[i] = 26; a2[i] = 121; i++;
 a1[i] = 26; a2[i] = 123; i++;
 a1[i] = 23; a2[i] = 172; i++;
 a1[i] = 26; a2[i] = 125; i++;
 a1[i] = 26; a2[i] = 126; i++;
 a1[i] = 26; a2[i] = 127; i++;
 a1[i] = 23; a2[i] = 188; i++;
 a1[i] = 23; a2[i] = 189; i++;
 a1[i] = 23; a2[i] = 190; i++;
 a1[i] = 23; a2[i] = 191; i++;
 a1[i] = 23; a2[i] = 232; i++;
 a1[i] = 23; a2[i] = 233; i++;
 a1[i] = 23; a2[i] = 234; i++;
 a1[i] = 23; a2[i] = 235; i++;
 a1[i] = 23; a2[i] = 238; i++;
 a1[i] = 23; a2[i] = 239; i++;
 a1[i] = 23; a2[i] = 254; i++;
 a1[i] = 23; a2[i] = 255; i++;
 a1[i] = 24; a2[i] = 231; i++;
 a1[i] = 24; a2[i] = 239; i++;
 a1[i] = 24; a2[i] = 255; i++;
 a1[i] = 25; a2[i] = 225; i++;
 a1[i] = 25; a2[i] = 227; i++;
 a1[i] = 25; a2[i] = 230; i++;
 a1[i] = 25; a2[i] = 231; i++;
 a1[i] = 25; a2[i] = 233; i++;
 a1[i] = 25; a2[i] = 234; i++;
 a1[i] = 25; a2[i] = 235; i++;
 a1[i] = 25; a2[i] = 238; i++;
 a1[i] = 25; a2[i] = 239; i++;
 a1[i] = 25; a2[i] = 241; i++;
 a1[i] = 25; a2[i] = 243; i++;
 a1[i] = 25; a2[i] = 246; i++;
 a1[i] = 25; a2[i] = 247; i++;
 a1[i] = 25; a2[i] = 248; i++;
 a1[i] = 25; a2[i] = 249; i++;
 a1[i] = 47; a2[i] = 92; i++;
 a1[i] = 25; a2[i] = 251; i++;
 a1[i] = 25; a2[i] = 254; i++;
 a1[i] = 25; a2[i] = 255; i++;
 a1[i] = 27; a2[i] = 214; i++;
 a1[i] = 27; a2[i] = 215; i++;
 a1[i] = 27; a2[i] = 216; i++;
 a1[i] = 46; a2[i] = 117; i++;
 a1[i] = 27; a2[i] = 219; i++;
 a1[i] = 27; a2[i] = 222; i++;
 a1[i] = 27; a2[i] = 223; i++;
 a1[i] = 27; a2[i] = 228; i++;
 a1[i] = 45; a2[i] = 121; i++;
 a1[i] = 27; a2[i] = 231; i++;
 a1[i] = 27; a2[i] = 236; i++;
 a1[i] = 27; a2[i] = 237; i++;
 a1[i] = 30; a2[i] = 190; i++;
 a1[i] = 27; a2[i] = 239; i++;
 a1[i] = 27; a2[i] = 252; i++;
 a1[i] = 27; a2[i] = 253; i++;
 a1[i] = 27; a2[i] = 255; i++;
 a1[i] = 30; a2[i] = 225; i++;
 a1[i] = 61; a2[i] = 105; i++;
 a1[i] = 30; a2[i] = 230; i++;
 a1[i] = 30; a2[i] = 231; i++;
 a1[i] = 30; a2[i] = 233; i++;
 a1[i] = 30; a2[i] = 235; i++;
 a1[i] = 30; a2[i] = 238; i++;
 a1[i] = 30; a2[i] = 239; i++;
 a1[i] = 30; a2[i] = 241; i++;
 a1[i] = 61; a2[i] = 109; i++;
 a1[i] = 30; a2[i] = 246; i++;
 a1[i] = 30; a2[i] = 247; i++;
 a1[i] = 30; a2[i] = 249; i++;
 a1[i] = 31; a2[i] = 234; i++;
 a1[i] = 30; a2[i] = 251; i++;
 a1[i] = 30; a2[i] = 254; i++;
 a1[i] = 30; a2[i] = 255; i++;
 a1[i] = 31; a2[i] = 241; i++;
 a1[i] = 31; a2[i] = 242; i++;
 a1[i] = 61; a2[i] = 125; i++;
 a1[i] = 31; a2[i] = 246; i++;
 a1[i] = 31; a2[i] = 247; i++;
 a1[i] = 31; a2[i] = 248; i++;
 a1[i] = 31; a2[i] = 249; i++;
 a1[i] = 62; a2[i] = 126; i++;
 a1[i] = 31; a2[i] = 251; i++;
 a1[i] = 31; a2[i] = 254; i++;
 a1[i] = 31; a2[i] = 255; i++;
 a1[i] = 105; a2[i] = 105; i++;
 a1[i] = 105; a2[i] = 107; i++;
 a1[i] = 107; a2[i] = 107; i++;
 a1[i] = 105; a2[i] = 111; i++;
 a1[i] = 107; a2[i] = 109; i++;
 a1[i] = 107; a2[i] = 111; i++;
 a1[i] = 111; a2[i] = 111; i++;
 a1[i] = 105; a2[i] = 126; i++;
 a1[i] = 105; a2[i] = 127; i++;
 a1[i] = 62; a2[i] = 214; i++;
 a1[i] = 107; a2[i] = 125; i++;
 a1[i] = 107; a2[i] = 126; i++;
 a1[i] = 107; a2[i] = 127; i++;
 a1[i] = 61; a2[i] = 237; i++;
 a1[i] = 111; a2[i] = 123; i++;
 a1[i] = 61; a2[i] = 253; i++;
 a1[i] = 111; a2[i] = 126; i++;
 a1[i] = 111; a2[i] = 127; i++;
 a1[i] = 126; a2[i] = 126; i++;
 a1[i] = 126; a2[i] = 127; i++;
 a1[i] = 127; a2[i] = 127; i++;
 a1[i] = 105; a2[i] = 150; i++;
 a1[i] = 105; a2[i] = 151; i++;
 a1[i] = 107; a2[i] = 151; i++;
 a1[i] = 107; a2[i] = 159; i++;
 a1[i] = 111; a2[i] = 159; i++;
 a1[i] = 107; a2[i] = 189; i++;
 a1[i] = 107; a2[i] = 191; i++;
 a1[i] = 107; a2[i] = 214; i++;
 a1[i] = 107; a2[i] = 215; i++;
 a1[i] = 107; a2[i] = 223; i++;
 a1[i] = 107; a2[i] = 253; i++;
 a1[i] = 107; a2[i] = 255; i++;
 a1[i] = 111; a2[i] = 246; i++;
 a1[i] = 111; a2[i] = 247; i++;
 a1[i] = 111; a2[i] = 249; i++;
 a1[i] = 111; a2[i] = 251; i++;
 a1[i] = 111; a2[i] = 255; i++;
 a1[i] = 126; a2[i] = 255; i++;
 a1[i] = 127; a2[i] = 254; i++;
 a1[i] = 127; a2[i] = 255; i++;
 a1[i] = 255; a2[i] = 255; i++;

astatnum[0]=82173l;

   astatnum[1]=82173l;
   astatnum[2]=82173l;
   astatnum[3]=51060l;
   astatnum[4]=82173l;
   astatnum[5]=51060l;
   astatnum[6]=51052l;
   astatnum[7]=16836l;
   astatnum[8]=82173l;
   astatnum[9]=51052l;
   astatnum[10]=51060l;
   astatnum[11]=16836l;
   astatnum[12]=51060l;
   astatnum[13]=16836l;
   astatnum[14]=16836l;
   astatnum[15]=5750l;
   astatnum[16]=82173l;
   astatnum[17]=51060l;
   astatnum[18]=51052l;
   astatnum[19]=16836l;
   astatnum[20]=51052l;
   astatnum[21]=16836l;
   astatnum[22]=20472l;
   astatnum[23]=3071l;
   astatnum[24]=69868l;
   astatnum[25]=25777l;
   astatnum[26]=25777l;
   astatnum[27]=4021l;
   astatnum[28]=25777l;
   astatnum[29]=4021l;
   astatnum[30]=5000l;
   astatnum[31]=625l;
   astatnum[32]=82173l;
   astatnum[33]=51052l;
   astatnum[34]=51060l;
   astatnum[35]=16836l;
   astatnum[36]=69868l;
   astatnum[37]=25777l;
   astatnum[38]=25777l;
   astatnum[39]=4021l;
   astatnum[40]=51052l;
   astatnum[41]=20472l;
   astatnum[42]=16836l;
   astatnum[43]=3071ll;
   astatnum[44]=25777l;
   astatnum[45]=5000l;
   astatnum[46]=4021l;
   astatnum[47]=625l;
   astatnum[48]=51060l;
   astatnum[49]=16836l;
   astatnum[50]=16836l;
   astatnum[51]=5750l;
   astatnum[52]=25777l;
   astatnum[53]=4021l;
   astatnum[54]=5000l;
   astatnum[55]=625l;
   astatnum[56]=25777l;
   astatnum[57]=5000l;
   astatnum[58]=4021l;
   astatnum[59]=625l;
   astatnum[60]=9604l;
   astatnum[61]=784l;
   astatnum[62]=784l;
   astatnum[63]=98l;
   astatnum[64]=82173l;
   astatnum[65]=51052l;
   astatnum[66]=69868l;
   astatnum[67]=25777l;
   astatnum[68]=51060l;
   astatnum[69]=16836l;
   astatnum[70]=25777l;
   astatnum[71]=4021l;
   astatnum[72]=51052l;
   astatnum[73]=20472l;
   astatnum[74]=25777l;
   astatnum[75]=5000l;
   astatnum[76]=16836l;
   astatnum[77]=3071l;
   astatnum[78]=4021l;
   astatnum[79]=625l;
   astatnum[80]=51060l;
   astatnum[81]=16836l;
   astatnum[82]=25777l;
   astatnum[83]=4021l;
   astatnum[84]=16836l;
   astatnum[85]=5750l;
   astatnum[86]=5000l;
   astatnum[87]=625l;
   astatnum[88]=25777l;
   astatnum[89]=5000l;
   astatnum[90]=9604l;
   astatnum[91]=784l;
   astatnum[92]=4021l;
   astatnum[93]=625l;
   astatnum[94]=784l;
   astatnum[95]=98l;
   astatnum[96]=51052l;
   astatnum[97]=20472l;
   astatnum[98]=25777l;
   astatnum[99]=5000l;
   astatnum[100]=25777l;
   astatnum[101]=5000l;
   astatnum[102]=9604l;
   astatnum[103]=784l;
   astatnum[104]=20472l;
   astatnum[105]=4825l;
   astatnum[106]=5000l;
   astatnum[107]=512l;
   astatnum[108]=5000l;
   astatnum[109]=512l;
   astatnum[110]=784l;
   astatnum[111]=64l;
   astatnum[112]=16836l;
   astatnum[113]=3071l;
   astatnum[114]=4021l;
   astatnum[115]=625l;
   astatnum[116]=4021l;
   astatnum[117]=625l;
   astatnum[118]=784l;
   astatnum[119]=98l;
   astatnum[120]=5000l;
   astatnum[121]=512l;
   astatnum[122]=784l;
   astatnum[123]=64l;
   astatnum[124]=784l;
   astatnum[125]=64l;
   astatnum[126]=64l;
   astatnum[127]=8l;
   astatnum[128]=82173l;
   astatnum[129]=69868l;
   astatnum[130]=51052l;
   astatnum[131]=25777l;
   astatnum[132]=51052l;
   astatnum[133]=25777l;
   astatnum[134]=20472l;
   astatnum[135]=5000l;
   astatnum[136]=51060l;
   astatnum[137]=25777l;
   astatnum[138]=16836l;
   astatnum[139]=4021l;
   astatnum[140]=16836l;
   astatnum[141]=4021l;
   astatnum[142]=3071l;
   astatnum[143]=625l;
   astatnum[144]=51052l;
   astatnum[145]=25777l;
   astatnum[146]=20472l;
   astatnum[147]=5000l;
   astatnum[148]=20472l;
   astatnum[149]=5000l;
   astatnum[150]=4825l;
   astatnum[151]=512l;
   astatnum[152]=25777l;
   astatnum[153]=9604l;
   astatnum[154]=5000l;
   astatnum[155]=784l;
   astatnum[156]=5000l;
   astatnum[157]=784l;
   astatnum[158]=512l;
   astatnum[159]=64l;
   astatnum[160]=51060l;
   astatnum[161]=25777l;
   astatnum[162]=16836l;
   astatnum[163]=4021l;
   astatnum[164]=25777l;
   astatnum[165]=9604l;
   astatnum[166]=5000l;
   astatnum[167]=784l;
   astatnum[168]=16836l;
   astatnum[169]=5000l;
   astatnum[170]=5750l;
   astatnum[171]=625l;
   astatnum[172]=4021l;
   astatnum[173]=784l;
   astatnum[174]=625l;
   astatnum[175]=98l;
   astatnum[176]=16836l;
   astatnum[177]=4021l;
   astatnum[178]=3071l;
   astatnum[179]=625l;
   astatnum[180]=5000l;
   astatnum[181]=784l;
   astatnum[182]=512l;
   astatnum[183]=64l;
   astatnum[184]=4021l;
   astatnum[185]=784l;
   astatnum[186]=625l;
   astatnum[187]=98l;
   astatnum[188]=784l;
   astatnum[189]=64l;
   astatnum[190]=64l;
   astatnum[191]=8l;
   astatnum[192]=51060l;
   astatnum[193]=25777l;
   astatnum[194]=25777l;
   astatnum[195]=9604l;
   astatnum[196]=16836l;
   astatnum[197]=4021l;
   astatnum[198]=5000l;
   astatnum[199]=784l;
   astatnum[200]=16836l;
   astatnum[201]=5000l;
   astatnum[202]=4021l;
   astatnum[203]=784l;
   astatnum[204]=5750l;
   astatnum[205]=625l;
   astatnum[206]=625l;
   astatnum[207]=98l;
   astatnum[208]=16836l;
   astatnum[209]=4021l;
   astatnum[210]=5000l;
   astatnum[211]=784l;
   astatnum[212]=3071l;
   astatnum[213]=625l;
   astatnum[214]=512l;
   astatnum[215]=64l;
   astatnum[216]=4021l;
   astatnum[217]=784l;
   astatnum[218]=784l;
   astatnum[219]=64l;
   astatnum[220]=625l;
   astatnum[221]=98l;
   astatnum[222]=64l;
   astatnum[223]=8l;
   astatnum[224]=16836l;
   astatnum[225]=5000l;
   astatnum[226]=4021l;
   astatnum[227]=784ll;
   astatnum[228]=4021l;
   astatnum[229]=784l;
   astatnum[230]=784l;
   astatnum[231]=64l;
   astatnum[232]=3071l;
   astatnum[233]=512l;
   astatnum[234]=625l;
   astatnum[235]=64l;
   astatnum[236]=625l;
   astatnum[237]=64l;
   astatnum[238]=98l;
   astatnum[239]=8l;
   astatnum[240]=5750l;
   astatnum[241]=625l;
   astatnum[242]=625l;
   astatnum[243]=98l;
   astatnum[244]=625l;
   astatnum[245]=98l;
   astatnum[246]=64l;
   astatnum[247]=8l;
   astatnum[248]=625l;
   astatnum[249]=64l;
   astatnum[250]=98l;
   astatnum[251]=8l;
   astatnum[252]=98l;
   astatnum[253]=8l;
   astatnum[254]=8l;
   astatnum[255]=1l;
}


int perms[48][27];  // The 48 symmetries of the cube

long pow2[27]; // The 27 powers of 2

void buildperms(void) {

  int i,j,k,p,x,y,z,u,v,w;
  int n=0;
  long power=1;
  for (i=0; i<27; i++) { pow2[i] = power; power *= 2; }
  for (x=0;x<2;x++)

for (y=0;y<2;y++) for (z=0;z<2;z++) for (p=0;p<6;p++) {  ; for (i=0;i<3;i++) for (j=0;j<3;j++) for (k=0;k<3;k++) { switch (p) { case 0: u=i; v=j; w=k; break; case 1: u=i; v=k; w=j; break; case 2: u=j; v=i; w=k; break; case 3: u=j; v=k; w=i; break; case 4: u=k; v=j; w=i; break; case 5: u=k; v=i; w=j; break; } if (x) u = 2-u; if (y) v = 2-v; if (z) w = 2-w; perms[n][i+3*j+9*k] = u+3*v+9*w; } n++; } }


long perm(long set, int i) // permutes set by permutation i { long in,out; int j;

in = set; out = 0; for (j=0; j < 27; j++) { if (in & 1) out |= pow2[perms[i][j]]; in >>= 1; }

return out; }


int index(long set) // gives the permutation index of set of minimal size

{

long best = set, tmp; int i,j=0;

for (i=0; i < 48; i++) { tmp = perm(set, i); if (tmp < best) { best = tmp; j = i; } } return j;

}


const int bc[12] = { 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25 }; // the b points in [3]^3 const int ac[14] = { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 }; // the ac points in [3]^3 const int ap[8] = {0, 2, 6, 8, 18, 20, 24, 26}; // the a points in [3]^3

void init_data(void) {

int i,j,k,a; short int sig;

// allocate space

   init_numstat();        // load pareto counts


for (a=0; a<256;a++) { data[a] = malloc(astatnum[a] * sizeof(long)); datastat[a] = malloc(astatnum[a] * sizeof(short)); }

   /* enumerate the 230 line-free sets in [3]^2 by brute force */
   int moser_2d[512];

int lincount=0;

   for (i=0; i < 512; i++)
    {
     moser_2d[i] = 0;

if ((i & 7) == 7) continue; if ((i & 56) == 56) continue; if ((i & 73) == 73) continue; if ((i & 84) == 84) continue; if ((i & 146) == 146) continue; if ((i & 273) == 273) continue; if ((i & 292) == 292) continue; if ((i & 448) == 448) continue; moser_2d[i] = 1; lincount++; }

printf("Number of 2D Moser sets: %d\n", lincount);

   /* Now enumerate all line-free sets in [3]^3 by brute force. */
   long set, tmpset;

long slice1, slice2, slice3; int s[4]; long temp_numstat[256]; long num_linefree=0;

/* Initialise temp_numstat */ for (a=0; a<256; a++) temp_numstat[a]=0;

   printf("Computing 3D Moser sets...\n");

for (slice1 = 0; slice1 < 512; slice1++) if (moser_2d[slice1]) for (slice2 = 0; slice2 < 512; slice2++) if (moser_2d[slice2]) for (slice3 = 0; slice3 < 512; slice3++) if (moser_2d[slice3]) { set = slice1 | (slice2 << 9) | (slice3 << 18);

if ((set & line_bitmasks[0]) == line_bitmasks[0]) continue; if ((set & line_bitmasks[1]) == line_bitmasks[1]) continue; if ((set & line_bitmasks[2]) == line_bitmasks[2]) continue; if ((set & line_bitmasks[3]) == line_bitmasks[3]) continue; if ((set & line_bitmasks[4]) == line_bitmasks[4]) continue; if ((set & line_bitmasks[5]) == line_bitmasks[5]) continue; if ((set & line_bitmasks[6]) == line_bitmasks[6]) continue; if ((set & line_bitmasks[7]) == line_bitmasks[7]) continue; if ((set & line_bitmasks[8]) == line_bitmasks[8]) continue; if ((set & line_bitmasks[9]) == line_bitmasks[9]) continue; if ((set & line_bitmasks[10]) == line_bitmasks[10]) continue; if ((set & line_bitmasks[11]) == line_bitmasks[11]) continue; if ((set & line_bitmasks[12]) == line_bitmasks[12]) continue; if ((set & line_bitmasks[13]) == line_bitmasks[13]) continue; if ((set & line_bitmasks[14]) == line_bitmasks[14]) continue; if ((set & line_bitmasks[15]) == line_bitmasks[15]) continue; if ((set & line_bitmasks[16]) == line_bitmasks[16]) continue; if ((set & line_bitmasks[17]) == line_bitmasks[17]) continue; if ((set & line_bitmasks[18]) == line_bitmasks[18]) continue; if ((set & line_bitmasks[19]) == line_bitmasks[19]) continue; if ((set & line_bitmasks[20]) == line_bitmasks[20]) continue; if ((set & line_bitmasks[21]) == line_bitmasks[21]) continue; if ((set & line_bitmasks[22]) == line_bitmasks[22]) continue; if ((set & line_bitmasks[23]) == line_bitmasks[23]) continue; if ((set & line_bitmasks[24]) == line_bitmasks[24]) continue;

/* now compute the a signature */ a=0; for (j=0; j < 8; j++) { if (set & pow2[ap[j]]) a |= (int) pow2[j]; }

/* now compute the a,b,c,d stats */ s[0]=s[1]=s[2]=s[3]=0; tmpset = set; for (j=0; j < 27; j++) { if (tmpset & 1l) s[stat[j]]++; tmpset /= 2; } sig = s[0] + s[1]*17 + s[2]*17*25 + s[3]*17*25*13;

      		data[a][temp_numstat[a]] = set;

datastat[a][temp_numstat[a]] = sig;

temp_numstat[a]++; num_linefree++; if (num_linefree % 10000 == 0) printf("*"); }

printf("\nNumber of 3D Moser sets: %ld\n", num_linefree); // checksum for (a=0; a<256; a++) if (astatnum[a] != temp_numstat[a]) printf("Inconsistency at %d!  %ld != %ld\n", a,astatnum[a],temp_numstat[a]); }




  1. define NUM_CRUSH 144

const int expand[NUM_CRUSH] = {0, 1, 3, 6, 7, 15, 19, 20, 21, 22, 23, 28, 29, 31, 54, 55, 56, 57, 58, 59, 62, 63, 96, 97, 99, 101, 102, 103, 111, 112, 113, 115, 116, 117, 118, 119, 124, 125, 127, 240, 241, 243, 246, 247, 255, 270, 271, 284, 285, 286, 287, 318, 319, 324, 325, 327, 332, 333, 334, 335, 343, 348, 349, 350, 351, 360, 361, 362, 363, 364, 365, 366, 367, 377, 379, 380, 381, 382, 383, 449, 451, 454, 455, 457, 459, 462, 463, 468, 469, 470, 471, 473, 475, 476, 477, 478, 479, 497, 498, 499, 502, 503, 504, 505, 506, 507, 510, 511, 876, 877, 879, 895, 911, 924, 925, 927, 938, 939, 942, 943, 958, 959, 995, 998, 999, 1005, 1007, 1011, 1013, 1014, 1015, 1020, 1021, 1023, 1782, 1783, 1785, 1787, 1791, 2013, 2015, 2046, 2047, 4095}; // minimal b-labels

int crush[4096]; // maps the label of a b-word to the label of its minimal permutation int crushperm[4096]; // maps the label of a b-word to the permutation used to minimise it


void buildhash(void) {

  int i,j,k,count=0;
  long l,m;
  printf("Building hash...");
  for (i = 0; i<4096;i++)

{ j=i; l=0; for (k=0;k<12;k++) { if (j & 1) l |= pow2[bc[k]]; j >>=1; } // l is now the b-word associated to i crushperm[i] = index(l); // printf("%o (%lo) crushed by %d ", i, l, crushperm[i]); m = perm(l, crushperm[i]); // printf("and permuted to %o ", m);

j=0; for (k=0;k<12;k++) if (m & pow2[bc[k]]) j |= pow2[k]; // j is now the label of the reduction of l

// printf(" (i.e. %d)", j); for (k=0; k<NUM_CRUSH; k++) if (expand[k] == j) crush[i] = k;

if (i == expand[crush[i]]) { // printf("%d ", i); count++; }

} printf("done, with %d a-signatures.\n", count); // printf("Total mins: %d\n", count); }


  1. define MAX_PARETO 27 // at most 27 pareto-optimals per forbidden set

short int table[144][16384][MAX_PARETO];

void read_lookup(void)

{

FILE *input = fopen("newlookup.dat", "rb");

printf("Loading lookup table...\n"); int i, j, k; for (i=0; i<144; i++) { printf("."); for (j=0; j<16384; j++) fread(table[i][j],sizeof(short int),MAX_PARETO,input); } printf("\nTable loaded!\n");

}
  1. define NUMOUTER 16575 // total number of stats for the Level 1/Level 3 pair

char feasible[NUMOUTER][NUM_PARETO][2]; // feasible[a][b][c] means that there is a Level 1/Level 3 pair with total statistic a whose Level 2

                                       // forbidden set (minus 222) permits the statistic b; if c=1, then the forbidden set contains 222


int test( long forbidden, int numouter ) // see what statistics are compatible with a forbidden set. Note that the 222 bit is ignored.

{
 int i,j,k,l,a,b,x,y,z,w;
 long forb, recon;
 int hascenter = ((forbidden & pow2[13]) > 0);  // 1 if forb contains 2222

// printf("Testing %lo (= %ld in decimal)\n", forbidden, forbidden); // printf("(%lo)", forbidden);

 a=0;
 for (k=0;k<12;k++)

if (forbidden & pow2[bc[k]]) a |= pow2[k];

 forb = perm(forbidden, crushperm[a]);
 a = crush[a];

// printf("Permuted version: %lo (= %ld in decimal), using permutation %d\n", forb, forb, crushperm[a]);


 b=0;
 for (k=0;k<14;k++)

if (forb & pow2[ac[k]]) b |= pow2[k];

// printf("Hashes: %o %o \n", a, b );

 recon = 0;
 for (k=0;k<12;k++)
    if (expand[a] & pow2[k]) recon |= pow2[bc[k]];
 for (k=0;k<14;k++)
    if (b & pow2[k]) recon |= pow2[ac[k]];

// printf("Reconstituted permutation: %lo (= %ld in decimal)\n", recon, recon);

 int count=0;
 for (i=0;i<MAX_PARETO;i++)

{ j = table[a][b][i]; if (j==-1) break; feasible[numouter][j][hascenter] = 1; // printf("<%d %d %d> ", numouter, j, hascenter); count++; }

 return count;
}


  1. define NUM_4D_LINES 125 // the nonhorizontal bitmasks

long masks[3][NUM_4D_LINES]; // the three bitmasks for each of the lines

void create_4d_lines(void)

{

int i,j,k; int count;

printf("Building 4d lines...");

count=0; for (i=0;i<27;i++) for (j=0;j<27;j++) for (k=0;k<27;k++) if (i+k == 2*j) if ((i/3)+(k/3) == 2*(j/3)) if ((i/9)+(k/9) == 2*(j/9)) { masks[0][count] = pow2[i]; masks[1][count] = pow2[j]; masks[2][count] = pow2[k]; count++; } printf("done, with %d lines.\n", count);

}


double done=0; double total;

void testpair(int stage, int x, int y) // scans all Level 1/Level 3 pairs with a-signatures x, y respectively

{

int i,j,k; int numouter; long level1, level2, level3;

printf("%lf percent done\n", done * 100 / total ); printf("Testing stage %d (%d,%d) - %lu pairs\n", stage, x, y, astatnum[x] * astatnum[y]); done += astatnum[x] * astatnum[y];


for (i=0; i<astatnum[x]; i++) for (j=0; j<astatnum[y]; j++) { numouter = datastat[x][i] + datastat[y][j]; // the total stats of the level 1/ level 3 pair level1 = data[x][i]; level3 = data[y][j]; // compute the level 1 / level 3 pairs level2 = 0; for (k=0; k<NUM_4D_LINES; k++) if ((level1 & masks[0][k]) && (level3 & masks[2][k])) level2 |= masks[1][k]; // printf("\n[%lo %lo %lo] \n", level1, level3, level2); test(level2,numouter); // level2 is the forbidden set } }


char paretos[17][33][25][9][2]; // paretos[a][b][c][d][e] = 1 if (a,b,c,d,e) is found to be feasible

FILE * output;

void analyse(void) // dump the feasible table

{

int i,j,k; int a,b,c,d,e; int b0,c0,d0;

for (i=0; i<NUMOUTER; i++) { a = i%17; b0 = (i/17)%25; c0 = (i/(17*25))%13; d0 = (i/(17*25*13)); // the outer layers (Level 1, Level 3) contribute to a,b,c,d statistics for (j=0; j<NUM_PARETO;j++) for (k=0; k<2; k++) if (feasible[i][j][k]) { b=b0 + alist[j]; // The middle layer (Level 2) contribute to b,c,d,e statistics c=c0 + blist[j]; d=d0 + clist[j]; if (k==0) e = dlist[j]; else e=0; if (paretos[a][b][c][d][e] == 0) { printf("Feasible: (%d %d %d %d %d)\n", a, b, c, d, e); fprintf(output, "%d %d %d %d %d\n", a, b, c, d, e); paretos[a][b][c][d][e] = 1; } } }

}


void main(int argc, char* argv[]) {

  int i,j,k,l,m;
  long forb, forb_base;


  if (argc < 3)

{ printf("Need two arguments: '%s x y', where 0 <= x <= y <= 390.\n", argv[0]); printf("Or '%s x y count', if one only wants a pair count.\n", argv[0]); return; }

  int x = atoi(argv[1]);
  int y = atoi(argv[2]);
  if ( (x<0) || (x>y) || (y>390) )

{ printf("Need 0 <= x <= y <= 390, sorry!\n"); return; }

  char str[100];
  buildperms();
  buildhash();
  create_4d_lines();
  init_numstat();


  printf("Scanning the pairs from class #%d to class #%d.\n", x, y);
  total=0;
  for (i=x; i<=y; i++)

total += (double) astatnum[a1[i]] * (double) astatnum[a2[i]];

  printf("Number of pairs in this scan: %lf (=%lf percent of total)\n", total, total*100 / 62009590818l);
  if (argc > 3) return;
  strcpy(str, "output_");
  strcat(str, argv[1]);
  strcat(str, "_");
  strcat(str, argv[2]);
  strcat(str, ".txt");
  output = fopen(str,"w");
  printf("All pairs found will be output to %s.\n", str);
  init_data();
  read_lookup();
  for (i=0; i<17; i++)

for (j=0; j<33; j++) for (k=0; k<25; k++) for (l=0; l<9; l++) for (m=0; m<2; m++)

				     paretos[i][j][k][l][m] = 0;   // initialise the table of feasible 4D statistics
  for (i=0; i<NUMOUTER; i++)

for (j=0; j<NUM_PARETO; j++) for (k=0; k<2; k++) feasible[i][j][k]=0; // initialise the compressed table of feasible 4D statistics

  for (i=x; i<=y; i++)

{ testpair(i,a1[i], a2[i]); // scan stage i analyse(); // convert the compressed table to uncompressed, dump any new statistics obtained }

  fclose(output);

}