Second attempt at computing H t(x) for negative t

From Polymath Wiki
Revision as of 13:00, 4 January 2019 by Teorth (talk | contribs)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

We are interested in approximating

[math]\displaystyle{ H_t(x) = \int_{\bf R} \frac{1}{8} \xi(\frac{1+ix}{2} + i |t|^{1/2} v) \frac{1}{\sqrt{\pi}} e^{-v^2}\ dv \quad (1.1) }[/math]

in the regime when [math]\displaystyle{ x }[/math] is large and [math]\displaystyle{ t }[/math] is large and negative.

To cancel off an exponential decay factor in the [math]\displaystyle{ \xi }[/math] function, it is convenient to shift the v variable by [math]\displaystyle{ \pi |t|^{1/2}/8 }[/math], thus

[math]\displaystyle{ H_t(x) = \frac{1}{8\sqrt{\pi}} \int_{\bf R} \xi(\frac{1+ix}{2} + i |t|^{1/2} v - \pi i |t|/8) e^{-(v - \pi |t|^{1/2}/8)^2}\ dv \quad (1.2) }[/math]
[math]\displaystyle{ = \frac{\exp( \pi^2 t / 64)}{8\sqrt{\pi}} \int_{\bf R} \xi(\frac{1+i\tilde x}{2} + i |t|^{1/2} v) e^{-v^2 + \pi |t|^{1/2} v / 4}\ dv \quad (1.3) }[/math]

where

[math]\displaystyle{ \tilde x := x - \pi |t|/4 = x + \frac{\pi t}{4}. \quad (1.4) }[/math]

Now from the definition of [math]\displaystyle{ \xi }[/math] and the Stirling approximation we have

[math]\displaystyle{ \frac{1}{8} \xi(s) \approx M_0(s) \zeta(s)\quad (1.5) }[/math]

where [math]\displaystyle{ M_0 }[/math] is defined in (6) of the writeup. Thus

[math]\displaystyle{ H_t(x) \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{\pi}} \int_{\bf R} M_0(\frac{1+i\tilde x}{2} + i |t|^{1/2} v) \zeta(\frac{1+i\tilde x}{2} + i |t|^{1/2} v) e^{-v^2 + \pi |t|^{1/2} v / 4}\ dv.\quad (1.6) }[/math]

By Taylor expansion we have

[math]\displaystyle{ M_0(\frac{1+i\tilde x}{2} + i |t|^{1/2} v) \approx M_0(\frac{1+i\tilde x}{2}) \exp( \alpha( \frac{1+i\tilde x}{2} ) i |t|^{1/2} v + \alpha'(\frac{1+i \tilde x}{2}) \frac{-|t| v^2}{2} )\quad (1.7) }[/math]

where [math]\displaystyle{ \alpha }[/math] is defined in equation (8) of the writeup. We have the approximations

[math]\displaystyle{ \alpha(\frac{1+i\tilde x}{2} ) \approx \frac{1}{2} \log \frac{\tilde x}{4\pi} + \frac{i\pi}{4} \quad (1.8) }[/math]

and

[math]\displaystyle{ \alpha'(\frac{1+i\tilde x}{2} ) \approx \frac{-i}{\tilde x} \quad (1.9) }[/math]

and hence

[math]\displaystyle{ H_t(x) \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{\pi}} M_0(\frac{1+i\tilde x}{2}) \int_{\bf R} \exp( \frac{i |t|^{1/2} v}{2} \log \frac{\tilde x}{4\pi} - \pi |t|^{1/2} v/4 + i |t| v^2 / 2\tilde x) \zeta(\frac{1+i\tilde x}{2} + i |t|^{1/2} v) e^{-v^2 + \pi |t|^{1/2} v / 4}\ dv.\quad (1.10) }[/math]

The two factors of [math]\displaystyle{ \exp( \pi |t|^{1/2} v/4 ) }[/math] cancel. If we now write

[math]\displaystyle{ N := \sqrt{\frac{\tilde x}{4\pi}}\quad (1.11) }[/math]

and

[math]\displaystyle{ u := |t|/N^2 = 4\pi |t|/\tilde x,\quad (1.12) }[/math]

we conclude that

[math]\displaystyle{ H_t(x) \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{\pi}} M_0(\frac{1+i\tilde x}{2}) \int_{\bf R} \exp( i |t|^{1/2} v \log N + i u v^2 / 8 \pi) \zeta(\frac{1+i\tilde x}{2} + i |t|^{1/2} v) e^{-v^2}\ dv.\quad (1.13) }[/math]

If we formally write [math]\displaystyle{ \zeta(s) = \sum_n \frac{1}{n^s} }[/math] (ignoring convergence issues) we obtain

[math]\displaystyle{ H_t(x) \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{\pi}} M_0(\frac{1+i\tilde x}{2}) \sum_n \int_{\bf R} \exp( i |t|^{1/2} v \log N + i u v^2 / 8 \pi) n^{-\frac{1+i\tilde x}{2} - i |t|^{1/2} v} e^{-v^2}\ dv\quad (1.14) }[/math]
[math]\displaystyle{ \approx \frac{\exp( \pi^2 t / 64)}{8\sqrt{\pi}} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}} \sum_n \int_{\bf R} \exp( - i |t|^{1/2} v \log \frac{n}{N} + i u v^2 / 8 \pi -\frac{1+i\tilde x}{2} \log \frac{n}{N} ) e^{-v^2}\ dv\quad (1.15) }[/math]

We can compute the [math]\displaystyle{ v }[/math] integral to obtain

[math]\displaystyle{ H_t(x) \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{1-\frac{iu}{8\pi}}} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}} \sum_n \exp( - \frac{|t| \log^2 \frac{n}{N}}{4 (1 - iu / 8 \pi)} -\frac{1+i\tilde x}{2} \log \frac{n}{N}).\quad (1.16) }[/math]

We approximate [math]\displaystyle{ \frac{1+i\tilde x}{2} \approx \frac{i\tilde x}{2} }[/math] to obtain

[math]\displaystyle{ H_t(x) \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{1-\frac{iu}{8\pi}}} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}} \sum_n \exp( - \frac{|t| \log^2 \frac{n}{N}}{4 (1 - iu / 8 \pi)} -\frac{i\tilde x}{2} \log \frac{n}{N})\quad (1.17) }[/math]

and then we approximate [math]\displaystyle{ \log^2 \frac{n}{N} \approx \frac{(n-N)^2}{N^2} }[/math] and [math]\displaystyle{ |t| = u N^2 }[/math] and [math]\displaystyle{ \tilde x= 4\pi N^2 }[/math] to obtain

[math]\displaystyle{ H_t(x) \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{1-\frac{iu}{8\pi}}} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}} \sum_n \exp( - \frac{u(n-N)^2}{4 (1 - iu / 8 \pi)} - 2\pi i N^2 \log \frac{n}{N}).\quad (1.18) }[/math]

Next, we use the Taylor approximation

[math]\displaystyle{ \log \frac{n}{N} \approx \frac{n-N}{N} - \frac{(n-N)^2}{2N^2} + \frac{(n-N)^3}{3N^3}\quad (1.19) }[/math]

to obtain

[math]\displaystyle{ H_t(x) \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{1-\frac{iu}{8\pi}}} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}} \sum_n \exp( - \frac{u(n-N)^2}{4 (1 - iu / 8 \pi)} - 2\pi i N(n-N) + \pi i (n-N)^2 - \frac{2\pi i}{3N} (n-N)^3).\quad (1.20) }[/math]

Writing

[math]\displaystyle{ N(n-N) = \frac{1}{2} n^2 - \frac{1}{2} N^2 - \frac{1}{2} (N-n)^2 }[/math]

this becomes

[math]\displaystyle{ H_t(x) \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{1-\frac{iu}{8\pi}}} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}} e^{\pi i N^2} \sum_n \exp( - \frac{u(n-N)^2}{4 (1 - iu / 8 \pi)} - \pi i n^2 + 2 \pi i (n-N)^2 - \frac{2\pi i}{3N} (n-N)^3)\quad (1.23) }[/math]
[math]\displaystyle{ \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{1-\frac{iu}{8\pi}}} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}} e^{\pi i N^2} \sum_n \exp( \frac{2\pi i(n-N)^2}{(1 - iu / 8 \pi)} + \pi i n - \frac{2\pi i}{3N} (n-N)^3)\quad (1.24) }[/math]

By Poisson summation, this is

[math]\displaystyle{ H_t(x) \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{1-\frac{iu}{8\pi}}} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}} e^{\pi i N^2} \sum_{m \in {\bf Z}} \int_{\bf R} \exp( \frac{2\pi i(x-N)^2}{(1 - iu / 8 \pi)} + 2\pi i m x + \pi i x - \frac{2\pi i}{3N} (x-N)^3)\ dx\quad (1.25) }[/math]
[math]\displaystyle{ \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{1-\frac{iu}{8\pi}}} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}} e^{\pi i N^2} \sum_{m \in {\bf Z} + \frac{1}{2}} \int_{\bf R} \exp( \frac{2\pi i(x-N)^2}{1 - iu / 8 \pi} + 2\pi i m x - \frac{2\pi i}{3N} (x-N)^3)\ dx\quad (1.26) }[/math]
[math]\displaystyle{ \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{1-\frac{iu}{8\pi}}} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}} e^{\pi i N^2} \sum_{m \in {\bf Z} + \frac{1}{2}} e^{2\pi i m N} \int_{\bf R} \exp( - \frac{2\pi ix^2}{1 - iu / 8 \pi} + 2\pi i m x - \frac{2\pi i}{3N} x^3)\ dx\quad (1.27) }[/math]

The integral here can be evaluated as an Airy integral, but perhaps a Taylor expansion of the last term is a better approach?

We return to (1.18) and try to apply Poisson summation without using the Taylor expansion. We first observe that as [math]\displaystyle{ \exp( \pi i n^2 - \pi i n ) = 1 }[/math] for all integers [math]\displaystyle{ n }[/math], we have

[math]\displaystyle{ H_t(x) \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{1-\frac{iu}{8\pi}}} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}} \sum_n \exp( - \frac{u(n-N)^2}{4 (1 - iu / 8 \pi)} + \pi i n^2 - \pi i n - 2\pi i N^2 \log \frac{n}{N}).\quad (1.28) }[/math]

(this is to try to reduce the oscillation of the phase near [math]\displaystyle{ n \sim N }[/math]). By Poisson summation (extending the range of n to the entire integers), this is

[math]\displaystyle{ H_t(x) \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{1-\frac{iu}{8\pi}}} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}} \sum_{m \in {\bf Z}} \int_{\bf R} \exp( - \frac{u(X-N)^2}{4 (1 - iu / 8 \pi)} + \pi i X^2 - \pi i X + 2\pi i m X - 2\pi i N^2 \log \frac{X}{N})\ dX.\quad (1.29) }[/math]

(using [math]\displaystyle{ X }[/math] as the variable of integration to distinguish it from the initial variable [math]\displaystyle{ x }[/math]. Shifting [math]\displaystyle{ m }[/math] by 1/2, this is

[math]\displaystyle{ H_t(x) \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{1-\frac{iu}{8\pi}}} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}}\exp(\pi i N^2) \sum_{m \in {\bf Z} + \frac{1}{2}} f_m( u, N ) \quad (1.30) }[/math]

where

[math]\displaystyle{ f_m(u,N) := \int_{\bf R} \exp( - \frac{u(X-N)^2}{4 (1 - iu / 8 \pi)} + \pi i X^2 - \pi i N^2 + 2\pi i m X - 2\pi i N^2 \log \frac{X}{N})\ dX.\quad (1.31) }[/math]

These functions should be roughly 1-periodic in N and decay quickly as [math]\displaystyle{ |m| \to \infty }[/math]; they are roughly like the m^th Fourier harmonics of [math]\displaystyle{ H_t }[/math] in the N variable.

Shifting [math]\displaystyle{ X }[/math] by [math]\displaystyle{ N }[/math], we have

[math]\displaystyle{ f_m(u,N) = \int_{\bf R} \exp( - \frac{uX^2}{4 (1 - iu / 8 \pi)} + \pi i (X+N)^2 - \pi i N^2 + 2\pi i m (X+N) - 2\pi i N^2 \log(1+\frac{X}{N}) )\ dX\quad (1.32) }[/math]
[math]\displaystyle{ = \exp( 2\pi i m N) \int_{\bf R} \exp( \frac{2\pi i}{1-\frac{iu}{8\pi}} X^2 + 2\pi i m X - 2\pi i N^2 [\log(1+\frac{X}{N}) - \frac{X}{N} + \frac{X^2}{2N^2}] )\ dX. (1.33) }[/math]

If we ignore the term [math]\displaystyle{ 2\pi i N^2 [\log(1+\frac{X}{N}) - \frac{X}{N} + \frac{X^2}{2N^2}] = O( X^3 / N ) }[/math], we would have

[math]\displaystyle{ f_m(u,N) \approx \exp( 2\pi i m N) \int_{\bf R} \exp( \frac{2\pi i}{1-\frac{iu}{8\pi}} X^2 + 2\pi i m X)\ dX (1.34) }[/math]
[math]\displaystyle{ = \sqrt{\pi i (1-\frac{iu}{8\pi})} \exp( 2\pi i m N - \frac{\pi i m^2}{2} (1 - \frac{iu}{8\pi}) )(1.35) }[/math]

hence

[math]\displaystyle{ H_t(x) \approx \exp( \pi^2 t / 64) \sqrt{\pi i} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}}\exp(\pi i N^2) \sum_{m \in {\bf Z} + \frac{1}{2}} \exp( 2\pi i m N - \frac{\pi i m^2}{2} (1 - \frac{iu}{8\pi}) ) \quad (1.36) }[/math]
[math]\displaystyle{ = \exp( \pi^2 t / 64) \sqrt{\pi i} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}}\exp(\pi i N^2) \sum_{m \in {\bf Z} + \frac{1}{2}} e^{-m^2 u / 16} \exp( 2\pi i m N - \frac{\pi i m^2}{2} ) \quad (1.37) }[/math]
[math]\displaystyle{ = \exp( \pi^2 t / 64) \sqrt{\pi i} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}}\exp(\pi i N^2) \sum_{m \in {\bf Z} + \frac{1}{2}} e^{-m^2 u / 16} \cos( 2\pi m N ) \exp( - \frac{\pi i m^2}{2} ) \quad (1.38) }[/math]
[math]\displaystyle{ = 2\exp( \pi^2 t / 64 + \frac{\pi i}{8} - u/64) \sqrt{\pi} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}}\exp(\pi i N^2) \sum_{n=0}^\infty e^{-n(n+1) u / 16} \cos( 2\pi (n+\frac{1}{2}) N ) \exp( - \frac{\pi i n(n+1)}{2} ) \quad (1.39) }[/math]

This seems to be an adequate approximation for large [math]\displaystyle{ u }[/math], but not for small [math]\displaystyle{ u }[/math].

We return now to (1.20) and write it slightly differently. We compute

[math]\displaystyle{ \exp( - 2\pi i N(n-N) + \pi i (n-N)^2 ) = \exp( \pi i n^2 - 4\pi i N n + 3 \pi i N^2 ) }[/math]
[math]\displaystyle{ = \exp( -\pi i n - 4\pi i N n + 3 \pi i N^2 ) }[/math]
[math]\displaystyle{ = \exp(- 2\pi i \{ 2N + \frac{1}{2} \} n + 3 \pi i N^2 ) }[/math]

where [math]\displaystyle{ \{x\} }[/math] is the fractional part. We thus have

[math]\displaystyle{ H_t(x) \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{1-\frac{iu}{8\pi}}} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}} e^{3\pi i N^2} \sum_n \exp( - \frac{u(n-N)^2}{4 (1 - iu / 8 \pi)} - 2\pi i n \{2N + \frac{1}{2}\} - \frac{2\pi i}{3N} (n-N)^3).\quad (1.40) }[/math]

When [math]\displaystyle{ u }[/math] is small, the summands here are fairly slowly varying, which suggests the use of Poisson summation:

[math]\displaystyle{ H_t(x) \approx \frac{\exp( \pi^2 t / 64)}{\sqrt{1-\frac{iu}{8\pi}}} M_0(\frac{1+i\tilde x}{2}) N^{-\frac{1+i\tilde x}{2}} e^{3\pi i N^2} \sum_{m \in {\bf Z}} g_m(N,u) \quad (1.41) }[/math]

where

[math]\displaystyle{ g_m(N,u) = \int_{\bf R} \exp( - \frac{u(X-N)^2}{4 (1 - iu / 8 \pi)} + 2\pi i X (m - \{2N + \frac{1}{2}\}) - \frac{2\pi i}{3N} (X-N)^3)\ dX.\quad (1.42) }[/math]

The region of integration here should contain a neighbourhood of [math]\displaystyle{ N }[/math] as this is where the integrand is largest. We can shift [math]\displaystyle{ X }[/math] by [math]\displaystyle{ N }[/math] to obtain

[math]\displaystyle{ g_m(N,u) = e^{2\pi i N (m - \{2N + \frac{1}{2}\})} \int_{\bf R} \exp( - \frac{uX^2}{4 (1 - iu / 8 \pi)} + 2\pi i X (m - \{2N + \frac{1}{2}\}) - \frac{2\pi i}{3N} X^3)\ dX.\quad (1.43) }[/math]

and now the region of integration should be centered at [math]\displaystyle{ X=0 }[/math].

Suppose we neglect the third order term [math]\displaystyle{ \frac{2\pi i}{3N} X^3 }[/math]. Then

[math]\displaystyle{ g_m(N,u) \approx e^{2\pi i N (m - \{2N + \frac{1}{2}\})} \int_{\bf R} \exp( - \frac{uX^2}{4 (1 - iu / 8 \pi)} + 2\pi i X (m - \{2N + \frac{1}{2}\})\ dX\quad (1.44) }[/math]
[math]\displaystyle{ \approx \sqrt{\frac{4 \pi (1-iu/8\pi)}{u}} e^{2\pi i N (m - \{2N + \frac{1}{2}\})} \exp( -\frac{4 \pi^2 (m - \{2N + \frac{1}{2}\})^2 (1 - iu/8\pi) }{u} ) \quad (1.45) }[/math]

For small [math]\displaystyle{ u }[/math], this decays quickly for [math]\displaystyle{ m }[/math] far from [math]\displaystyle{ \{2N + \frac{1}{2}\} }[/math]. For [math]\displaystyle{ N }[/math] close to an integer or half-integer, [math]\displaystyle{ \{2N+\frac{1}{2}\} }[/math] is close to 1/2, and so the m=0 and m=1 terms should be dominant.

Let's compute the integral in (1.43). We have

[math]\displaystyle{ g_m(N,u) = \exp( i N c ) \int_{\bf R} \exp( -\frac{ia}{3} X^3 + i b X^2 + i c X )\ dX \quad (1.46) }[/math]

where

[math]\displaystyle{ a := \frac{2\pi}{N} \quad (1.47) }[/math]
[math]\displaystyle{ b := i \frac{u}{4(1-iu/8\pi)} \quad (1.48) }[/math]
[math]\displaystyle{ c := 2 \pi (m - \{ 2N + \frac{1}{2} \} ). \quad (1.49) }[/math]

Change variables [math]\displaystyle{ X = a^{-1/3} Y }[/math]:

[math]\displaystyle{ g_m(N,u) = a^{-1/3} \exp( i N c ) \int_{\bf R} \exp( -\frac{i}{3} Y^3 + i b a^{-2/3} Y^2 + i c a^{-1/3} Y )\ dY \quad (1.50) }[/math]

Change variables [math]\displaystyle{ Y = Z + b a^{-2/3} }[/math] and shift the contour of integration:

[math]\displaystyle{ g_m(N,u) = a^{-1/3} \exp( i N c + 4 i b^3 a^{-2}/3 + i bc a^{-1}) \int_{\bf R} \exp( -\frac{i}{3} Z^3 + i(c a^{-1/3} + b^2 a^{-4/3}) Z )\ dZ.\quad (1.51) }[/math]

Since

[math]\displaystyle{ \mathrm{Ai}(x) = \frac{1}{\pi} \int_0^\infty \cos(\frac{t^3}{3} + xt)\ dt \quad (1.52) }[/math]
[math]\displaystyle{ = \frac{1}{2\pi} \int_{\bf R} \exp(i\frac{t^3}{3} + ixt)\ dt \quad (1.53) }[/math]
[math]\displaystyle{ = \frac{1}{2\pi} \int_{\bf R} \exp(-i\frac{Z^3}{3} - ixZ)\ dZ \quad (1.54) }[/math]

we thus conclude that

[math]\displaystyle{ g_m(N,u) = 2\pi a^{-1/3} \exp( i N c + 4 i b^3 a^{-2}/3 + i bc a^{-1}) \mathrm{Ai}( - (c a^{-1/3} + b^2 a^{-4/3}) ).\quad (1.55) }[/math]

Note: b is complex valued, so the argument of the Airy function is also complex. Hopefully this is not going to be an issue. Also as N is large, the argument is going to be fairly large. But this could be a good thing; it means that we could hope to use one of the known asymptotics of the Airy function to get a more tractable approximation.