Selberg sieve variational problem

From Polymath Wiki
Revision as of 16:52, 8 December 2013 by Teorth (talk | contribs) (New page: Let <math>M_k</math> be the quantity :<math>\displaystyle M_k := \sup_F \frac{\sum_{m=1}^k J_k^{(m)}(F)}{I_k(F)}</math> where <math>F</math> ranges over square-integrable functions on the...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Let [math]\displaystyle{ M_k }[/math] be the quantity

[math]\displaystyle{ \displaystyle M_k := \sup_F \frac{\sum_{m=1}^k J_k^{(m)}(F)}{I_k(F)} }[/math]

where [math]\displaystyle{ F }[/math] ranges over square-integrable functions on the simplex

[math]\displaystyle{ \displaystyle {\cal R}_k := \{ (t_1,\ldots,t_k) \in [0,+\infty)^k: t_1+\ldots+t_k \leq 1 \} }[/math]

with [math]\displaystyle{ I_k, J_k^{(m)} }[/math] being the quadratic forms

[math]\displaystyle{ \displaystyle I_k(F) := \int_{{\cal R}_k} F(t_1,\ldots,t_k)^2\ dt_1 \ldots dt_k }[/math]

and

[math]\displaystyle{ \displaystyle J_k^{(m)}(F) := \int_{{\cal R}_{k-1}} (\int_0^{1-\sum_{i \neq m} t_i} F(t_1,\ldots,t_k)\ dt_m)^2 dt_1 \ldots dt_{m-1} dt_{m+1} \ldots dt_k. }[/math]

It is known that [math]\displaystyle{ DHL[k,m+1] }[/math] holds whenever [math]\displaystyle{ EH[\theta] }[/math] holds and [math]\displaystyle{ M_k \gt \frac{2m}{\theta} }[/math]. Thus for instance, [math]\displaystyle{ M_k \gt 2 }[/math] implies [math]\displaystyle{ DHL[k,2] }[/math] on the Elliott-Halberstam conjecture, and [math]\displaystyle{ M_k\gt 4 }[/math] implies [math]\displaystyle{ DHL[k,2] }[/math] unconditionally.

Upper bounds

We have the upper bound

[math]\displaystyle{ \displaystyle M_k \leq \frac{k}{k-1} \log k }[/math] (1)

that is proven as follows.

The key estimate is

[math]\displaystyle{ \displaystyle \int_0^{1-t_2-\ldots-t_k} F(t_1,\ldots,t_k)\ dt_1)^2 \leq \frac{\log k}{k-1} \int_0^{1-t_2-\ldots-t_k} F(t_1,\ldots,t_k)^2 (1 - t_1-\ldots-t_k+ kt_1)\ dt_1. }[/math]. (2)

Assuming this estimate, we may integrate in $t_2,\ldots,t_k$ to conclude that

[math]\displaystyle{ \displaystyle J_k^{(1)}(F) \leq \frac{\log k}{k-1} \int F^2 (1-t_1-\ldots-t_k+kt_1)\ dt_1 \ldots dt_k }[/math]

which symmetrises to

[math]\displaystyle{ \sum_{m=1}^k J_k^{(m)}(F) \leq k \frac{\log k}{k-1} \int F^2\ dt_1 \ldots dt_k }[/math]

giving the desired upper bound (1).

It remains to prove (2). By Cauchy-Schwarz, it suffices to show that

[math]\displaystyle{ \displaystyle \int_0^{1-t_2-\ldots-t_k} \frac{dt_1}{1 - t_1-\ldots-t_k+ kt_1} \leq \frac{\log k}{k-1}. }[/math]

But writing $s = t_2+\ldots+t_k$, the left-hand side evaluates to

[math]\displaystyle{ \frac{1}{k-1} (\log k(1-s) - \log (1-s) ) = \frac{\log k}{k-1} }[/math]

as required.

Lower bounds

World records

[math]\displaystyle{ k }[/math] Lower bound Upper bound
4 1.845 1.848
5 2.001162 2.0011797
59 3.898 4.148