The prime factors of the places where the first two sequences of length 1124 differ

From Polymath1Wiki
Jump to: navigation, search

The following numbers, which are given with their prime factorizations, are the places where the first two sequences of length 1124 take different values. The information was obtained from a table of the two sequences superimposed.

First, here are the numbers bunched up:

1 7 37 41 47 49=7x7 61 67 74=2x37 82=2x41 101 103 107 109 191 193 262=2x131 263 271 274=2x137 289=17x17 295=5x59 305=5x61 307 319=11x29 329=7x47 341=11x31 343=7x7x7 358=2x179 359 361=19x19 362=2x181 377=13x29 379 383 391=17x23 393=3x131 397 403 409 411=3x137 413=7x59 419 421 433 437=19x23 467 469=7x67 537=3x179 541 542=2x271 543=3x181 554=2x277 571 599 607 641 643 653 661 701 709 811 813=3x7x13 821 823 827 831=3x277 857 859 883 887 932=2x2x233 934=2x467 955=5x191 958=2x479 964=2x2x241 965=5x193 1051 1055=5x211 1065=3x5x71 1069 1074=2x3x179 1076=2x2x269 1081=23x47 1084=2x2x271 1094=2x547 1097 1109


And here they are a bit more spread out.

1

7

37

41

47

49=7x7

61

67

74=2x37

82=2x41

101

103

107

109

191

193

262=2x131

263

271

274=2x137

289=17x17

295=5x59

305=5x61

307

319=11x29

329=7x47

341=11x31

343=7x7x7

358=2x179

359

361=19x19

362=2x181

377=13x29

379

383

391=17x23

393=3x131

397

403

409

411=3x137

413=7x59

419

421

433

437=19x23

467

469=7x67

537=3x179

541

542=2x271

543=3x181

554=2x277

571

599

607

641

643

653

661

701

709

811

813=3x7x13

821

823

827

831=3x277

857

859

883

887

932=2x2x233

934=2x467

955=5x191

958=2x479

964=2x2x241

965=5x193

1051

1055=5x211

1065=3x5x71

1069

1074=2x3x179

1076=2x2x269

1081=23x47

1084=2x2x271

1094=2x547

1097

1109