Timeline

From Polymath Wiki
Revision as of 04:08, 29 March 2009 by Teorth (talk | contribs)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

A partial list of events occurring during the polymath1 project to date.

Date General Uniformity Ergodic theory Small n
Jan 26 Nielsen: Doing science online
Jan 27 Gowers: Is massively collaborative mathematics possible?
Jan 28 Kalai: Mathematics, science, and blogs
Jan 30 Gowers: Background to a polymath project

Nielsen: Is massively collaborative mathematics possible?

Feb 1 Gowers: Questions of procedure

Gowers: A combinatorial approach to DHJ (1-199)

Gowers: Why this particular problem?

Tao: A massively collaborative mathematical project

Trevisan: A people's history of mathematics

Blank: Massively collaborative mathematics

Solymosi.2: IP-corners problem proposed

Tao.4: Analytic proof of Sperner? Regularisation needed?

Hoang.4: Naive Varnavides for DHJ fails

Gowers.1: Carlson-Simpson theorem useful?

Tao.4: Stationarity useful?

Feb 2 Vipulnaik: On new modes of mathematical collaboration Gowers.9: Reweighting vertices needed for Varnavides?

Tao.17: Should use [math]\displaystyle{ O(\sqrt{n}) }[/math] wildcards

Tao.18: Use rich slices?

Gowers.19: Collect obstructions to uniformity!

Kalai.29: Fourier-analytic proof of Sperner?

O'Donnell.32: Use uniform distribution on slices

Gowers.38: Can't fix # wildcards in advance

Tao.39: Can take # wildcards to be O(1)

Bukh.44: Obstructions to Kruskal-Katona?

Tao.8: [math]\displaystyle{ c_0=1 }[/math], [math]\displaystyle{ c_1=2 }[/math], [math]\displaystyle{ c_2=6 }[/math], [math]\displaystyle{ 3^{n-O(\sqrt{n}} \leq c_n \leq o(3^n) }[/math]

Kalai.15: [math]\displaystyle{ c_n \gg 3^n/\sqrt{n} }[/math]

Tao.39: [math]\displaystyle{ c_n \geq 3^{n-O(\sqrt{\log n})} }[/math]

Tao.40: [math]\displaystyle{ c_3=18 }[/math]

Elsholtz.43: Moser(3)?

Feb 3 Nielsen: The polymath project Gowers.64: Use local equal-slices measure?

Gowers.70: Collection of obstructions to uniformity begins

Tao.86: Use Szemeredi's proof of Roth?

Jakobsen.59: [math]\displaystyle{ c_4 \geq 49 }[/math]

Tao.78: [math]\displaystyle{ c_4 \leq 54 }[/math]

Neylon.83: [math]\displaystyle{ 52 \leq c_4 \leq 54 }[/math], [math]\displaystyle{ 140 \leq c_5 \leq 162 }[/math]

Feb 4 Gowers: Quick question Tao.100: Use density incrementation?

Tao.118: Szemeredi's proof of Roth looks inapplicable

Jakobsen.90: [math]\displaystyle{ c_4=52 }[/math]
Feb 5 Tea time: Introspection Tao.130: DHJ(2.5)?

Bukh.132, O'Donnell.133, Solymosi.135: Proof of DHJ(2.5)

Tao.148: Obstructions to uniformity summarised

Tao: Upper and lower bounds for DHJ (200-299)
Feb 6 Solymosi.155: Pair removal for Kneser graphs

Gowers: The triangle removal approach (300-399)

Neylon.201: Greedy algorithm

Tao.206: Use [math]\displaystyle{ D_n }[/math]

Feb 7 Gowers.335: DHJ(j,k) introduced Jakobsen.207: [math]\displaystyle{ c_5 \geq 150 }[/math], [math]\displaystyle{ c_6 \geq 450 }[/math]

Peake.217: [math]\displaystyle{ c_7 \geq 1308 }[/math], [math]\displaystyle{ c_8 \geq 3780 }[/math]

Peake.218: Lower bounds up to [math]\displaystyle{ c_{15} }[/math]

Feb 8 Gowers: Quasirandomness and obstructions to uniformity: (400-499)

Ajtai-Szemeredi approach proposed

Tao.402: Standard obstruction to uniformity?

Gowers.403: Complexity 1 sets are more fundamental obstructions

Gowers.411: Are global complexity 1 sets the only obstructions?

Peake.219: [math]\displaystyle{ c_{99} \geq 3^{98} }[/math]

Tao.225: Spreadsheet set up

Feb 9 Nielsen: Update on the polymath project Bukh.412: Negative answer to Gowers' question

Gowers.365: Equal slices measure introduced

Tao.419: Use low-influence instead of complexity 1?

Gowers.420: Need DHJ(0,2)

Tao.431: Use local obstructions rather than global obstructions?

Kalai.233: Higher k?
Feb 10 Tao.439: Use hypergraph regularity? Peake.241: [math]\displaystyle{ c_5 \leq 155 }[/math]; xyz notation

Peake.243: [math]\displaystyle{ c_5 \leq 154 }[/math]

Feb 11 le Bruyn: Yet another Math 2.0 proposal

Tao.470: Proto-wiki created

Tao.451: 01-insensitive case OK

Kalai.455: Hyper-optimistic conjecture

Tao.460: Connections with ergodic approach

Tao: A reading seminar on DHJ (600-699)

Tao.249: [math]\displaystyle{ \overline{c}^\mu_0 = 1 }[/math], [math]\displaystyle{ \overline{c}^\mu_1 = 2 }[/math], [math]\displaystyle{ \overline{c}^\mu_2 = 4 }[/math]

Dyer.254: [math]\displaystyle{ \overline{c}^\mu_3 = 6 }[/math]

Feb 12 Wiki set up O'Donnell.476: Fourier-analytic Sperner computations

McCutcheon.480: Strong Roth theorem proposed

Jakobsen.257: [math]\displaystyle{ \overline{c}^\mu_4 = 9 }[/math]

Jakobsen.258: [math]\displaystyle{ \overline{c}^\mu_5 = 12 }[/math]

Peake.262: Extremisers for [math]\displaystyle{ c_4 }[/math]

Feb 13 Gowers: Possible proof strategies (500-599) McCutcheon.505: IP uniformity norms?

Tao.614: Carlson-Simpson not needed for stationarity

Tao: Bounds for first few DHJ numbers (700-799)
Feb 14 Gowers.496: Equal slices implies uniform McCutcheon.508: Ergodic proof strategy

Tao.618: More randomness needed to invert maps

O'Donnell.622: [math]\displaystyle{ [3]^n }[/math] should already provide enough randomness

Tao.510: Finitary analogue of stationarity

Sauvaget: A proof that [math]\displaystyle{ c_5=154 }[/math]?
Feb 15 Tao.498: Uniform implies equal slices

Tao.514: DHJ(2.6) proposed

McCutcheon.518: Ramsey proof of DHJ(2.6)

Sauvaget: A new strategy for computing [math]\displaystyle{ c_n }[/math]

Markström.706: Integer program, [math]\displaystyle{ c_5=150 }[/math]

Cantwell.708: [math]\displaystyle{ c_6=450 }[/math]

Tao.715: Genetic algorithm?

Feb 16 Tao.524: Simplification of proof

O'Donnell 529: Ramsey-free proof of DHJ(2.6)?

McCutcheon.533: Ramsey theory incompatible with symmetry

Tao.626: Ramsey theorems summarised Peake.730: [math]\displaystyle{ c_5 }[/math] extremisers

Tao.731: Human proof that [math]\displaystyle{ c_5 \leq 152 }[/math]; [math]\displaystyle{ c_7 \leq 1348 }[/math]

Feb 17 Tao.536: Fourier-analytic proof of DHJ(2.6)

McCutcheon.541: "Cave-man" proof of DHJ(2.6)

Chua.736: [math]\displaystyle{ c'_5 \geq 124 }[/math]

Peake.738: Connection between Moser(3) and sphere packing

Feb 18 Gowers.544: Corners(1,3)?

Gowers.545: Fourier computations on equal-slices measure begin

Markström.739: [math]\displaystyle{ c_6 }[/math] extremiser unique
Feb 19 Markström.742: 43-point Moser sets in [math]\displaystyle{ [3]^4 }[/math] listed

Peake.743: 43-point sets analysed

Cantwell.744: [math]\displaystyle{ c'_5 \leq 128 }[/math]

Tao.745: 50+ point line-free sets in [math]\displaystyle{ [3]^4 }[/math] listed

Feb 20 Vipulniak: A quick review of the polymath project Solymosi.563: Moser(6) implies DHJ(3) Tao.630: IP convergence lemma Markström.747: 42-point Moser sets listed

Peake.751: Human proof of [math]\displaystyle{ c_5 \leq 151 }[/math]

Feb 21 Gowers: To thread or not to thread Gowers.580: Extreme localisation + density increment = DHJ(3)?

Gowers.581: Multidimensional Sperner

Gowers.582: Use Ajtai-Szemeredi argument to get density increment?

Tao.631: Informal combinatorial translation of ergodic DHJ(2)

Tao.578: Finitary ergodic proof of DHJ(2) proposed

Tao.632: Special cases of DHJ(3) translated

Peake.752: Human proof of [math]\displaystyle{ c_5=150 }[/math], [math]\displaystyle{ c_6=450 }[/math]

Tao.753: Sequences submitted to OEIS

Feb 23 McCutcheon.593: DHJ(2.7)

O'Donnell.596: Fourier-analytic proof of DHJ(2)

Gowers: Brief review of polymath1 (800-849)

O'Donnell.800: Fourier-analytic + density increment proof of DHJ(2)

Markström.463: 42-point Moser sets analysed

Tao.464: [math]\displaystyle{ c'_5 \leq 127 }[/math]

Chua.766: 3D Moser sets with 222 have [math]\displaystyle{ \leq 13 }[/math] points

Tao.767: 4D Moser sets with 2222 have [math]\displaystyle{ \leq 39 }[/math] points

Feb 24 Tao.809.2: Low-influence implies Sperner-positivity

Gowers.812: Fourier vs physical positivity

O'Donnell.814: [math]\displaystyle{ \ell_1 }[/math], [math]\displaystyle{ \ell_2 }[/math] equivalence

Feb 25 Gowers.820: Density increment on complexity 1 set Tao.818: Finitary ergodic sketch of DHJ(3)

O'Donnell.821: Simplified Fourier proof of DHJ(2) structure theorem

Cantwell.769: 5D Moser sets with 2222* have [math]\displaystyle{ \leq 124 }[/math] points

Peake.771: Exotic 43-point Moser sets described

Feb 26 Gowers.824: Complexity 1 + Ajtai-Szemeredi DHJ(3) sketch
Feb 27 Tao.826: Non-Fourier proof of DHJ(2) structure theorem

Gowers.828: Does correlation with 1-set imply density increment?

Tao.828.4: Energy increment proof for Gowers Q?

McCutcheon.832.2: Use dense fibres to answer Gowers Q? Elsholtz.775: Human proof of 2222* result

Cantwell.776: [math]\displaystyle{ c'_5 \leq 126 }[/math]

Feb 28 Tao.834: Use pullbacks for Gowers Q?

Gowers.835: Pullbacks don't work

O'Donnell 839: Increment-free Fourier proof of DHJ(2)

Tao.837.2: Dense fibres argument for Gowers Q Markström.779: 41-point Moser sets listed
Mar 1 Cantwell.782, Peake.784: [math]\displaystyle{ c'_5 \leq 125 }[/math]
Mar 2 Gowers: DHJ 851-899

Tao.853 Mass increment; connection with Hahn decomposition

Gowers.854 Higher-D Ajtai-Szemeredi?

Mar 3 McCutcheon.864 Caution: 12-sets not sigma-algebra! Dyer.786 [math]\displaystyle{ \overline{c}^\mu_6 \lt 18 }[/math]

Cantwell.787 125-sets have at most 41 points in middle slices

Mar 4 Markstrom.788: [math]\displaystyle{ c^\mu_n = 4,6,9,12 }[/math] for [math]\displaystyle{ n=2,3,4,5 }[/math]

Marc.791: [math]\displaystyle{ \overline{c}^\mu_{10} \geq 29 }[/math]

Tao.793: "score" introduced

Tao: DHJ3 (900-999) Density Hales-Jewett type numbers

Tao.901: 125-sets have D=0

Dyer.902: [math]\displaystyle{ \overline{c}^\mu_6 \lt 17 }[/math]

Carr.903: Genetic algorithm implemented

Mar 5 Peake.904 Scores for 6D Moser?

Tao.908 Find Pareto-optimal and extremal statistics?

Dyer.909 Wildcard variants of Moser

Cantwell.912 125-sets have at most 40 points in middle slices

Cantwell.913 125-sets have D=0 (alternate proof)

Peake.914 Pareto-optimal 3D statistics

Mar 6 Gowers.873 12-set density increment difficulty identified Dyer.917 [math]\displaystyle{ \overline{c}^\mu_7 \leq 22 }[/math]

Cantwell.920 [math]\displaystyle{ c'_6 \leq 373 }[/math]

Cantwell.921 125-sets have C=78 or 79

Markstrom.923 [math]\displaystyle{ \overline{c}^\mu_n = 6,9,12,15,18,22,26,31,35,40 }[/math] for [math]\displaystyle{ n=3,\ldots,12 }[/math]

Guest.930 GA without crossover?

Mar 7 Solymosi.880 Shelah-type flip-flop spaces? Peake.931 3D extremals and inequalities

Cantwell.932 125-sets have a middle slice of at most 39 points

Cantwell.933 125-sets have A=6,7,8

Cantwell.934 If C=78 then A=7,8

Tao.935 125-sets have stats (6,40,79,0,0,0), (7,40,78,0,0) or (8,39,78,0,0)

Mar 8 Gowers.881 Iterative partitioning of 12-sets?

Gowers.882 New proof of Ajtai-Szemeredi

O'Donnell.884 Multidimensional Sperner written up

Peake.939 [math]\displaystyle{ c'_6 \leq 365 }[/math]

Carr.940 [math]\displaystyle{ c'_6 \geq 353; c'_7 \geq 978 }[/math]

Tao.941 Seeding GA?

Cantwell.942 (6,40,79,0,0) eliminated

Tao.943 Linear programming proof of [math]\displaystyle{ c'_4 =43 }[/math]

Tao.944 [math]\displaystyle{ c'_6 \leq 364 }[/math]

Mar 9 Gowers.885 Sketch of DHJ(3)

Gowers.886 DHJ(4)?

Gowers.897 Writing of DHJ(k) begins

Austin.894 New ergodic proof of DHJ(k) Cantwell.945 (7,40,78,0,0) eliminated

Cantwell.949 (8,39,87,0,0) eliminated: [math]\displaystyle{ c'_5 = 124 }[/math]

Tao.950 [math]\displaystyle{ \overline{c}^\mu_n }[/math] submitted to OEIS

Carr.954 [math]\displaystyle{ c'_7 \geq 988 }[/math]

Mar 10 Gowers: Polymath1 and open collaborative mathematics

OU Math club: Problem solved (probably)

Gowers: Problem solved (probably) (1000-1049)

Gowers.1005.1 Tower-type bounds

Tao.1003 1-sets, 2-sets locally independent
Mar 11 Kalai: Polymath1: probable success Gowers.1007 Correlation component of DHJ(k) proof complete

Solymosi.1011 Shelah-type argument?

Markstrom.961 Partial confirmation of HOC for n=6,7

Elsholtz.962 Analysis of GA solutions

Tao.969 Integer programming for Behrend sphere statistics

Tao.970 [math]\displaystyle{ c'_7 \leq 1086 }[/math]

Mar 12 O'Donnell.1021 DHJ(k) => Varnavides completed

Gowers.1020 No apparent obstacles to proving DHJ(k)

O'Donnell.1025 Work exclusively with equal (non-degenerate) slices measure?

Tao.1024 Informal combinatorial translation of Austin's proof Markstrom.972, Dyer.973, Tao.974, Markstrom.977: Integer programming problem discovered, isolated, fixed

Tao.974: [math]\displaystyle{ c'_6 \leq 361 }[/math], [math]\displaystyle{ c'_7 \leq 1078 }[/math]

Cantwell.976: Partial recovery of 4D stats by hand

Mar 13 Nielsen: Biweekly links for 03/13/2009

Galdino: Links seminais

Flaxman: Gowers' polymath experiment: problem probably solved

Elsholtz.980: Use e=1, f=1, etc. refinements

Peake.982: xxyyzz inequalities

O'Bryant.984, O'Bryant.993: [math]\displaystyle{ c_n \gg 3^{n - 4\sqrt{\log 2}\sqrt{\log n}+\frac 12 \log \log n} }[/math]

Cantwell.985: Human proof of [math]\displaystyle{ c^\mu_3=6 }[/math] begins

Peake.989: xxyyz inequalities

Tao.990: [math]\displaystyle{ c'_7 \leq 1071 }[/math]

Peake.991: xxxyz, xxxxyz, xxxyyz inequalities

Seva.994: Kakeya in [3]^n?

Mar 14 Hariss: Polymath Tao.1035 Ramsey-free translation of Austin's proof Tao: DHJ(3) 1100-1199
Mar 15 Neylon: There are crowds, and then there are crowds...
Mar 16 Gowers: DHJ(3) and related results: 1050-1099
Mar 18 Polymath hits front page of Slashdot with this article

Nielsen: How changing the technology of collaboration can change the nature of collaboration

Mar 20 Nielsen: The Polymath project: scope of participation
Mar 21 Gans: Something interesting is going on in Maths
Mar 24 Gowers: Can Polymath be scaled up?

Vipulniak: Concluding notes on the polymath project - and a challenge


Mar 25 Nielsen: On scaling up the polymath project

Dyer: A gentle introduction to the Polymath project