Timeline of prime gap bounds
From Polymath1Wiki
Line 833:  Line 833:  
 Jan 8   Jan 8  
    
   4 [  +   4 [GEH] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment262403 Nielsen]) 
   8 [  +   8 [GEH] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment262403 Nielsen]) 
 Using a "gracefully degrading" lower bound for the numerator of the optimisation problem. Calculations confirmed [http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment262511 here].   Using a "gracefully degrading" lower bound for the numerator of the optimisation problem. Calculations confirmed [http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment262511 here].  
    
Line 851:  Line 851:  
# <nowiki>#</nowiki>  bound does not rely on Deligne's theorems  # <nowiki>#</nowiki>  bound does not rely on Deligne's theorems  
# [EH]  bound is conditional the ElliottHalberstam conjecture  # [EH]  bound is conditional the ElliottHalberstam conjecture  
+  # [GEH]  bound is conditional the generalized ElliottHalberstam conjecture  
# [m=N]  bound on intervals containing N+1 consecutive primes, rather than two  # [m=N]  bound on intervals containing N+1 consecutive primes, rather than two  
# strikethrough  values relied on a computation that has now been retracted  # strikethrough  values relied on a computation that has now been retracted  
See also the article on ''[[Finding narrow admissible tuples]]'' for benchmark values of <math>H</math> for various key values of <math>k_0</math>.  See also the article on ''[[Finding narrow admissible tuples]]'' for benchmark values of <math>H</math> for various key values of <math>k_0</math>. 
Revision as of 22:48, 9 January 2014
Date  or  k_{0}  H  Comments 

10 Aug 2005  6 [EH]  16 [EH] ([GoldstonPintzYildirim])  First bounded prime gap result (conditional on ElliottHalberstam)  
14 May 2013  1/1,168 (Zhang)  3,500,000 (Zhang)  70,000,000 (Zhang)  All subsequent work (until the work of Maynard) is based on Zhang's breakthrough paper. 
21 May  63,374,611 (Lewko)  Optimises Zhang's condition π(H) − π(k_{0}) > k_{0}; can be reduced by 1 by parity considerations  
28 May  59,874,594 (Trudgian)  Uses with p_{m + 1} > k_{0}  
30 May  59,470,640 (Morrison)
58,885,998? (Tao) 59,093,364 (Morrison) 57,554,086 (Morrison)  Uses and then following [HR1973], [HR1973b], [R1974] and optimises in m  
31 May  2,947,442 (Morrison)
2,618,607 (Morrison)  48,112,378 (Morrison)
42,543,038 (Morrison) 42,342,946 (Morrison)  Optimizes Zhang's condition ω > 0, and then uses an improved bound on δ_{2}  
1 Jun  42,342,924 (Tao)  Tiny improvement using the parity of k_{0}  
2 Jun  866,605 (Morrison)  13,008,612 (Morrison)  Uses a further improvement on the quantity Σ_{2} in Zhang's analysis (replacing the previous bounds on δ_{2})  
3 Jun  1/1,040? (v08ltu)  341,640 (Morrison)  4,982,086 (Morrison)
4,802,222 (Morrison)  Uses a different method to establish DHL[k_{0},2] that removes most of the inefficiency from Zhang's method. 
4 Jun  1/224?? (v08ltu)
1/240?? (v08ltu)  4,801,744 (Sutherland)
4,788,240 (Sutherland)  Uses asymmetric version of the HensleyRichards tuples  
5 Jun  34,429? (Paldi/v08ltu)  4,725,021 (Elsholtz)
4,717,560 (Sutherland) 397,110? (Sutherland) 4,656,298 (Sutherland) 389,922 (Sutherland) 388,310 (Sutherland) 388,284 (Castryck) 388,248 (Sutherland) 387,982 (Castryck) 387,974 (Castryck)  k_{0} bound uses the optimal Bessel function cutoff. Originally only provisional due to neglect of the kappa error, but then it was confirmed that the kappa error was within the allowed tolerance.
H bound obtained by a hybrid Schinzel/greedy (or "greedygreedy") sieve  
6 Jun  
 387,960 (Angelveit)
387,904 (Angeltveit)
 Improved Hbounds based on experimentation with different residue classes and different intervals, and randomized tiebreaking in the greedy sieve. 
7 Jun 

26,024? (vo8ltu) 
387,534 (pedantSutherland)  Many of the results ended up being retracted due to a number of issues found in the most recent preprint of Pintz. 
Jun 8  286,224 (Sutherland)
285,752 (pedantSutherland)  values of now confirmed; most tuples available on dropbox. New bounds on H obtained via iterated merging using a randomized greedy sieve.  
Jun 9  181,000*? (Pintz)  2,530,338*? (Pintz)  New bounds on H obtained by interleaving iterated merging with local optimizations.  
Jun 10  23,283? (Harcos/v08ltu)  285,210 (Sutherland)  More efficient control of the κ error using the fact that numbers with no small prime factor are usually coprime  
Jun 11  252,804 (Sutherland)  More refined local "adjustment" optimizations, as detailed here.
An issue with the k_{0} computation has been discovered, but is in the process of being repaired.  
Jun 12  22,951 (Tao/v08ltu)
22,949 (Harcos)  249,180 (Castryck)  Improved bound on k_{0} avoids the technical issue in previous computations.  
Jun 13  
Jun 14  248,898 (Sutherland)  
Jun 15  ? (Tao)  6,330? (v08ltu)
6,329? (Harcos) 6,329 (v08ltu)  60,830? (Sutherland)  Taking more advantage of the α convolution in the Type III sums 
Jun 16  (v08ltu)
  60,760* (Sutherland)
 Attempting to make the Weyl differencing more efficient; unfortunately, it did not work 
Jun 18  5,937? (Pintz/Tao/v08ltu)
5,672? (v08ltu) 5,459? (v08ltu) 5,454? (v08ltu) 5,453? (v08ltu)  60,740 (xfxie)
58,866? (Sun) 53,898? (Sun) 53,842? (Sun)  A new truncated sieve of Pintz virtually eliminates the influence of δ  
Jun 19  5,455? (v08ltu)
5,453? (v08ltu) 5,452? (v08ltu)  53,774? (Sun)
53,672*? (Sun)  Some typos in κ_{3} estimation had placed the 5,454 and 5,453 values of k_{0} into doubt; however other refinements have counteracted this  
Jun 20  ? (Tao)
? (Tao)  Replaced "completion of sums + Weil bounds" in estimation of incomplete Kloostermantype sums by "Fourier transform + Weyl differencing + Weil bounds", taking advantage of factorability of moduli  
Jun 21  (v08ltu)  1,470 (v08ltu)
1,467 (v08ltu)  12,042 (Engelsma)  Systematic tables of tuples of small length have been set up here and here (update: As of June 27 these tables have been merged and uploaded to an online database of current bounds on H(k) for k up to 5000). 
Jun 22    Slight improvement in the parameter in the Pintz sieve; unfortunately, it does not seem to currently give an actual improvement to the optimal value of k_{0}  
Jun 23  1,466 (Paldi/Harcos)  12,006 (Engelsma)  An improved monotonicity formula for reduces κ_{3} somewhat  
Jun 24  ? (v08ltu)
? (Tao)
 1,268? (v08ltu)  10,206? (Engelsma)  A theoretical gain from rebalancing the exponents in the Type I exponential sum estimates 
Jun 25  ? (FouvryKowalskiMichelNelson/Tao)  1,346? (Hannes)
1,007? (Hannes)  10,876? (Engelsma)  Optimistic projections arise from combining the GrahamRingrose numerology with the announced FouvryKowalskiMichelNelson results on d_3 distribution 
Jun 26  ? (Nielsen)
? (Tao)  962? (Hannes)  7,470? (Engelsma)  Beginning to flesh out various "levels" of Type I, Type II, and Type III estimates, see this page, in particular optimising van der Corput in the Type I sums. Integrated tuples page now online. 
Jun 27  ? (Tao)  902? (Hannes)  6,966? (Engelsma)  Improved the Type III estimates by averaging in α; also some slight improvements to the Type II sums. Tuples page is now accepting submissions. 
Jul 1  ? (Tao) 
873? (Hannes)
 Refactored the final CauchySchwarz in the Type I sums to rebalance the offdiagonal and diagonal contributions  
Jul 5  (Tao) 
Weakened the assumption of x^{δ}smoothness of the original moduli to that of double x^{δ}dense divisibility  
Jul 10  7/600? (Tao)  An in principle refinement of the van der Corput estimate based on exploiting additional averaging  
Jul 19  ? (Tao)  A more detailed computation of the Jul 10 refinement  
Jul 20  Jul 5 computations now confirmed  
Jul 27  633 (Tao)
632 (Harcos)  4,686 (Engelsma)  
Jul 30  # (Tao)  1,788# (Tao)  14,994# (Sutherland)  Bound obtained without using Deligne's theorems. 
Aug 17  1,783# (xfxie)  14,950# (Sutherland)  
Oct 3  13/1080?? (Nelson/Michel/Tao)  604?? (Tao)  4,428?? (Engelsma)  Found an additional variable to apply van der Corput to 
Oct 11  ? (Tao)  603? (xfxie)  4,422?(Engelsma)
12 [EH] (Maynard)  Worked out the dependence on δ in the Oct 3 calculation 
Oct 21  All sections of the paper relating to the bounds obtained on Jul 27 and Aug 17 have been proofread at least twice  
Oct 23  700#? (Maynard)  Announced at a talk in Oberwolfach  
Oct 24  110#? (Maynard)  628#? (ClarkJarvis)  With this value of k_{0}, the value of H given is best possible (and similarly for smaller values of k_{0})  
Nov 19  105# (Maynard)
5 [EH] (Maynard)  600# (Maynard/ClarkJarvis)  One also gets three primes in intervals of length 600 if one assumes ElliottHalberstam  
Nov 20 

 Optimizing the numerology in Maynard's large k analysis; unfortunately there was an error in the variance calculation  
Nov 21  68?? (Maynard)
582#*? (Nielsen]) 59,451 [m=2]#? (Nielsen]) 42,392 [m=2]? (Nielsen)  356?? (ClarkJarvis)  Optimistically inserting the Polymath8a distribution estimate into Maynard's low k calculations, ignoring the role of delta  
Nov 22  388*? (xfxie)
448#*? (Nielsen) 43,134 [m=2]#? (Nielsen)  698,288 [m=2]#? (Sutherland)
484,290 [m=2]? (Sutherland) 484,276 [m=2]? (Sutherland)  Uses the m=2 values of k_0 from Nov 21  
Nov 23  493,528 [m=2]#? Sutherland
493,510 [m=2]#? Sutherland 484,260 [m=2]? (Sutherland) 493,458 [m=2]#? Sutherland  
Nov 24  484,234 [m=2]? (Sutherland)
493,442 [m=2]#? (Sutherland) 484,192 [m=2]? (Sutherland)  
Nov 25  385#*? (xfxie)  484,176 [m=2]? (Sutherland)
493,436[m=2]#? (Sutherland)  Using the exponential moment method to control errors  
Nov 26  102# (Nielsen)  493,426 [m=2]#? (Sutherland)
576# (ClarkJarvis)  Optimising the original Maynard variational problem  
Nov 27  484,162 [m=2]? (Sutherland)
484,142 [m=2]? (Sutherland)  
Nov 28  484,136 [m=2]? (Sutherland
484,126 [m=2]? (Sutherland)  
Dec 4  64#? (Nielsen)  330#? (ClarkJarvis)  Searching over a wider range of polynomials than in Maynard's paper  
Dec 6  493,408 [m=2]#? (Sutherland)  
Dec 19  59#? (Nielsen)
10,000,000? [m=3] (Tao) 1,700,000? [m=3] (Tao) 38,000? [m=2] (Tao)  300#? (ClarkJarvis)
182,087,080? [m=3] (Sutherland) 179,933,380? [m=3] (Sutherland)  More efficient memory management allows for an increase in the degree of the polynomials used; the m=2,3 results use an explicit version of the lower bound.  
Dec 20  55#? (Nielsen) 36,000? [m=2] (xfxie)  175,225,874? [m=3] (Sutherland)
27,398,976? [m=3] (Sutherland) 26,682,014? [m=3] (Sutherland) 431,682? [m=2] (Sutherland) 430,448? [m=2] (Sutherland) 429,822? [m=2] (Sutherland)
272#? (ClarkJarvis)  
Dec 21  1,640,042? [m=3] (Sutherland)
1,631,027? [m=3] (Sutherland)
 429,798? [m=2] (Sutherland)
25,602,438? [m=3] (Sutherland) 405,528? [m=2] (Sutherland)
25,533,684? [m=3] (Sutherland) 395,264? [m=2] (Sutherland) 395,178? [m=2] (Sutherland) 25,527,718? [m=3] (Sutherland)
24,490,758? [m=3] (Sutherland)  Optimising the explicit lower bound  
Dec 22  1,628,944? [m=3] (Castryck)
75,000,000? [m=4] (Castryck) 3,400,000,000? [m=5] (Castryck) 5,511? [EH] [m=3] (Sutherland) 2,114,964#? [m=3] (Sutherland) 309,954? [EH] [m=5] (Sutherland) 74,487,363? [m=4] (xfxie)  395,154? [m=2] (Sutherland)
24,490,410? [m=3] (Sutherland)
395,122? [m=2] (Sutherland)
1,523,781,850? [m=4] (Sutherland) 82,575,303,678? [m=5] (Sutherland) 52,130? [EH] [m=3] (Sutherland) 33,661,442?# [m=3] (Sutherland) 24,462,790? [m=3] (Sutherland) 4,316,446? [EH] [m=5] (Sutherland)  A numerical precision issue was discovered in the earlier m=4 calculations  
Dec 23  41,589? [EH] [m=4] (Sutherland)
105,754,838#? [m=4] (Sutherland) 5,300,000#? [m=5] (Sutherland)  24,462,774? [m=3] (Sutherland)
1,512,832,950? [m=4] (Sutherland) 4,146,936? [EH] [m=5] (Sutherland) 52,116? [EH] [m=3] (Sutherland) 474,600? [EH] [m=4] (Sutherland) 474,460? [EH] [m=4] (Sutherland) 4,143,140? [EH] [m=5] (Sutherland) 32,313,942#? [m=3] (Sutherland) 2,186,561,568#? [m=4] (Sutherland) 474,372? [EH] [m=4] (Sutherland) 131,161,149,090#? [m=5] (Sutherland)  
Dec 24  474,320? [EH] [m=4] (Sutherland)
4,137,872? [EH] [m=5] (Sutherland) 24,462,654? [m=3] (Sutherland) 1,497,901,734? [m=4] (Sutherland) 32,313,878#? [m=3] (Sutherland)  
Dec 28  474,296? [EH] [m=4] (Sutherland)
4,137,854? [EH] [m=5] (Sutherland)  
Jan 2 2014  474,290? [EH] [m=4] (Sutherland)  
Jan 6  54? (Nielsen)  270? (ClarkJarvis)  
Jan 8  4 [GEH] (Nielsen)  8 [GEH] (Nielsen)  Using a "gracefully degrading" lower bound for the numerator of the optimisation problem. Calculations confirmed here.  
Jan 9  474,266? [EH] [m=4] (Sutherland) 
Legend:
 ?  unconfirmed or conditional
 ??  theoretical limit of an analysis, rather than a claimed record
 *  is majorized by an earlier but independent result
 #  bound does not rely on Deligne's theorems
 [EH]  bound is conditional the ElliottHalberstam conjecture
 [GEH]  bound is conditional the generalized ElliottHalberstam conjecture
 [m=N]  bound on intervals containing N+1 consecutive primes, rather than two
 strikethrough  values relied on a computation that has now been retracted
See also the article on Finding narrow admissible tuples for benchmark values of H for various key values of k_{0}.