Difference between revisions of "Timeline of prime gap bounds"
m (Clarified the meaning of * in the legend) 

(49 intermediate revisions by 2 users not shown)  
Line 1:  Line 1:  
−  
−  
−  
−  
−  
−  
{ border=1  { border=1  
    
!Date!!<math>\varpi</math> or <math>(\varpi,\delta)</math>!! <math>k_0</math> !! <math>H</math> !! Comments  !Date!!<math>\varpi</math> or <math>(\varpi,\delta)</math>!! <math>k_0</math> !! <math>H</math> !! Comments  
    
−    +   Aug 10 2005 
    
 6 [EH]   6 [EH]  
Line 15:  Line 9:  
 First bounded prime gap result (conditional on ElliottHalberstam)   First bounded prime gap result (conditional on ElliottHalberstam)  
    
−    +   May 14 2013 
−   1/1,168 ([http://annals.math.princeton.edu/  +   1/1,168 ([http://annals.math.princeton.edu/articles/7954 Zhang]) 
−   3,500,000 ([http://annals.math.princeton.edu/  +   3,500,000 ([http://annals.math.princeton.edu/articles/7954 Zhang]) 
−   70,000,000 ([http://annals.math.princeton.edu/  +   70,000,000 ([http://annals.math.princeton.edu/articles/7954 Zhang]) 
 All subsequent work (until the work of Maynard) is based on Zhang's breakthrough paper.   All subsequent work (until the work of Maynard) is based on Zhang's breakthrough paper.  
    
−    +   May 21 
    
    
Line 27:  Line 21:  
 Optimises Zhang's condition <math>\pi(H)\pi(k_0) > k_0</math>; [http://sbseminar.wordpress.com/2013/05/30/ijustcantresistthereareinfinitelymanypairsofprimesatmost59470640apart/#comment23439 can be reduced by 1] by parity considerations   Optimises Zhang's condition <math>\pi(H)\pi(k_0) > k_0</math>; [http://sbseminar.wordpress.com/2013/05/30/ijustcantresistthereareinfinitelymanypairsofprimesatmost59470640apart/#comment23439 can be reduced by 1] by parity considerations  
    
−    +   May 28 
    
    
Line 33:  Line 27:  
 Uses <math>(p_{m+1},\ldots,p_{m+k_0})</math> with <math>p_{m+1} > k_0</math>   Uses <math>(p_{m+1},\ldots,p_{m+k_0})</math> with <math>p_{m+1} > k_0</math>  
    
−    +   May 30 
    
    
Line 44:  Line 38:  
 Uses <math>(p_{m+1},\ldots,p_{m+k_0})</math> and then <math>(\pm 1, \pm p_{m+1}, \ldots, \pm p_{m+k_0/21})</math> following [HR1973], [HR1973b], [R1974] and optimises in m   Uses <math>(p_{m+1},\ldots,p_{m+k_0})</math> and then <math>(\pm 1, \pm p_{m+1}, \ldots, \pm p_{m+k_0/21})</math> following [HR1973], [HR1973b], [R1974] and optimises in m  
    
−    +   May 31 
    
 2,947,442 ([http://sbseminar.wordpress.com/2013/05/30/ijustcantresistthereareinfinitelymanypairsofprimesatmost59470640apart/#comment23460 Morrison])   2,947,442 ([http://sbseminar.wordpress.com/2013/05/30/ijustcantresistthereareinfinitelymanypairsofprimesatmost59470640apart/#comment23460 Morrison])  
Line 54:  Line 48:  
 Optimizes Zhang's condition <math>\omega>0</math>, and then uses an [http://sbseminar.wordpress.com/2013/05/30/ijustcantresistthereareinfinitelymanypairsofprimesatmost59470640apart/#comment23465 improved bound] on <math>\delta_2</math>   Optimizes Zhang's condition <math>\omega>0</math>, and then uses an [http://sbseminar.wordpress.com/2013/05/30/ijustcantresistthereareinfinitelymanypairsofprimesatmost59470640apart/#comment23465 improved bound] on <math>\delta_2</math>  
    
−    +   Jun 1 
    
    
Line 60:  Line 54:  
 Tiny improvement using the parity of <math>k_0</math>   Tiny improvement using the parity of <math>k_0</math>  
    
−    +   Jun 2 
    
 866,605 ([http://sbseminar.wordpress.com/2013/05/30/ijustcantresistthereareinfinitelymanypairsofprimesatmost59470640apart/#comment23479 Morrison])   866,605 ([http://sbseminar.wordpress.com/2013/05/30/ijustcantresistthereareinfinitelymanypairsofprimesatmost59470640apart/#comment23479 Morrison])  
Line 66:  Line 60:  
 Uses a [http://sbseminar.wordpress.com/2013/05/30/ijustcantresistthereareinfinitelymanypairsofprimesatmost59470640apart/#comment23473 further improvement] on the quantity <math>\Sigma_2</math> in Zhang's analysis (replacing the previous bounds on <math>\delta_2</math>)   Uses a [http://sbseminar.wordpress.com/2013/05/30/ijustcantresistthereareinfinitelymanypairsofprimesatmost59470640apart/#comment23473 further improvement] on the quantity <math>\Sigma_2</math> in Zhang's analysis (replacing the previous bounds on <math>\delta_2</math>)  
    
−    +   Jun 3 
 1/1,040? ([http://mathoverflow.net/questions/132632/tighteningzhangsboundclosed v08ltu])   1/1,040? ([http://mathoverflow.net/questions/132632/tighteningzhangsboundclosed v08ltu])  
 341,640 ([http://sbseminar.wordpress.com/2013/05/30/ijustcantresistthereareinfinitelymanypairsofprimesatmost59470640apart/#comment23512 Morrison])   341,640 ([http://sbseminar.wordpress.com/2013/05/30/ijustcantresistthereareinfinitelymanypairsofprimesatmost59470640apart/#comment23512 Morrison])  
Line 73:  Line 67:  
 Uses a [http://terrytao.wordpress.com/2013/06/03/theprimetuplesconjecturesievetheoryandtheworkofgoldstonpintzyildirimmotohashipintzandzhang/ different method] to establish <math>DHL[k_0,2]</math> that removes most of the inefficiency from Zhang's method.   Uses a [http://terrytao.wordpress.com/2013/06/03/theprimetuplesconjecturesievetheoryandtheworkofgoldstonpintzyildirimmotohashipintzandzhang/ different method] to establish <math>DHL[k_0,2]</math> that removes most of the inefficiency from Zhang's method.  
    
−    +   Jun 4 
 1/224?? ([http://polymathprojects.org/2013/06/04/polymathproposalboundedgapsbetweenprimes/#comment19961 v08ltu])   1/224?? ([http://polymathprojects.org/2013/06/04/polymathproposalboundedgapsbetweenprimes/#comment19961 v08ltu])  
1/240?? ([http://terrytao.wordpress.com/2013/06/04/onlinereadingseminarforzhangsboundedgapsbetweenprimes/#comment232661 v08ltu])  1/240?? ([http://terrytao.wordpress.com/2013/06/04/onlinereadingseminarforzhangsboundedgapsbetweenprimes/#comment232661 v08ltu])  
Line 81:  Line 75:  
 Uses asymmetric version of the HensleyRichards tuples   Uses asymmetric version of the HensleyRichards tuples  
    
−    +   Jun 5 
    
 34,429? ([http://terrytao.wordpress.com/2013/06/03/theprimetuplesconjecturesievetheoryandtheworkofgoldstonpintzyildirimmotohashipintzandzhang/#comment232721 Paldi]/[http://terrytao.wordpress.com/2013/06/03/theprimetuplesconjecturesievetheoryandtheworkofgoldstonpintzyildirimmotohashipintzandzhang/#comment232732 v08ltu])   34,429? ([http://terrytao.wordpress.com/2013/06/03/theprimetuplesconjecturesievetheoryandtheworkofgoldstonpintzyildirimmotohashipintzandzhang/#comment232721 Paldi]/[http://terrytao.wordpress.com/2013/06/03/theprimetuplesconjecturesievetheoryandtheworkofgoldstonpintzyildirimmotohashipintzandzhang/#comment232732 v08ltu])  
Line 110:  Line 104:  
    
−    +   Jun 6 
 <strike>(1/488,3/9272)</strike> ([http://arxiv.org/abs/1306.1497 Pintz])   <strike>(1/488,3/9272)</strike> ([http://arxiv.org/abs/1306.1497 Pintz])  
<strike>1/552</strike> ([http://arxiv.org/abs/1306.1497 Pintz], [http://terrytao.wordpress.com/2013/06/03/theprimetuplesconjecturesievetheoryandtheworkofgoldstonpintzyildirimmotohashipintzandzhang/#comment233149 Tao])  <strike>1/552</strike> ([http://arxiv.org/abs/1306.1497 Pintz], [http://terrytao.wordpress.com/2013/06/03/theprimetuplesconjecturesievetheoryandtheworkofgoldstonpintzyildirimmotohashipintzandzhang/#comment233149 Tao])  
Line 135:  Line 129:  
 Improved <math>H</math>bounds based on experimentation with different residue classes and different intervals, and randomized tiebreaking in the greedy sieve.   Improved <math>H</math>bounds based on experimentation with different residue classes and different intervals, and randomized tiebreaking in the greedy sieve.  
    
−    +   Jun 7 
 <strike>(1/538, 1/660)</strike> ([http://terrytao.wordpress.com/2013/06/03/theprimetuplesconjecturesievetheoryandtheworkofgoldstonpintzyildirimmotohashipintzandzhang/#comment233178 v08ltu])   <strike>(1/538, 1/660)</strike> ([http://terrytao.wordpress.com/2013/06/03/theprimetuplesconjecturesievetheoryandtheworkofgoldstonpintzyildirimmotohashipintzandzhang/#comment233178 v08ltu])  
<strike>(1/538, 31/20444)</strike> ([http://terrytao.wordpress.com/2013/06/03/theprimetuplesconjecturesievetheoryandtheworkofgoldstonpintzyildirimmotohashipintzandzhang/#comment233182 v08ltu])  <strike>(1/538, 31/20444)</strike> ([http://terrytao.wordpress.com/2013/06/03/theprimetuplesconjecturesievetheoryandtheworkofgoldstonpintzyildirimmotohashipintzandzhang/#comment233182 v08ltu])  
Line 736:  Line 730:  
3,400,000,000? [m=5] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258411 Castryck])  3,400,000,000? [m=5] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258411 Castryck])  
−  5,511  +  5,511 [EH] [m=3] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258433 Sutherland]) 
2,114,964#? [m=3] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258451 Sutherland])  2,114,964#? [m=3] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258451 Sutherland])  
Line 767:  Line 761:  
[http://math.mit.edu/~drew/admissible_309954_4316446.txt 4,316,446]? [EH] [m=5] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258457 Sutherland])  [http://math.mit.edu/~drew/admissible_309954_4316446.txt 4,316,446]? [EH] [m=5] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258457 Sutherland])  
 A numerical precision issue was discovered in the earlier m=4 calculations   A numerical precision issue was discovered in the earlier m=4 calculations  
+    
+   Dec 23  
+    
+   41,589? [EH] [m=4] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258529 Sutherland])  
+  
+  [http://www.cs.cmu.edu/~xfxie/project/admissible/k0/sol_varpi1080d13_41588_m4EH.mpl 41,588]? [EH] [m=4] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258555 xfxie])  
+  
+  [http://www.cs.cmu.edu/~xfxie/project/admissible/k0/sol_varpi1080d13_309661_m5EH.mpl 309,661]? [EH] [m=5] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258558 xfxie])  
+  
+  [http://math.mit.edu/~drew/maple_4_BV.txt 105,754,838]#? [m=4] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258587 Sutherland])  
+  
+  [https://math.mit.edu/~drew/maple_5_BV.txt 5,300,000,000]#? [m=5] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258626 Sutherland])  
+   [http://math.mit.edu/~drew/admissible_1628943_24462774.txt 24,462,774]? [m=3] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258527 Sutherland])  
+  
+  1,512,832,950? [m=4] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258527 Sutherland])  
+  
+  [http://math.mit.edu/~drew/admissible_309954_4146936.txt 4,146,936]? [EH] [m=5] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258528 Sutherland])  
+  
+  [http://math.mit.edu/~drew/admissible_5511_52116.txt 52,116] [EH] [m=3] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258528 Sutherland])  
+  
+  [http://math.mit.edu/~drew/admissible_41589_474600.txt 474,600]? [EH] [m=4] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258529 Sutherland])  
+  
+  [http://math.mit.edu/~drew/admissible_41588_474460.txt 474,460]? [EH] [m=4] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258569 Sutherland])  
+  
+  [http://math.mit.edu/~drew/admissible_309661_4143140.txt 4,143,140]? [EH] [m=5] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258570 Sutherland])  
+  
+  [http://math.mit.edu/~drew/admissible_2114964_32313942.txt 32,313,942]#? [m=3] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258572 Sutherland])  
+  
+  2,186,561,568#? [m=4] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258587 Sutherland])  
+  
+  [http://math.mit.edu/~drew/admissible_41588_474372.txt 474,372]? [EH] [m=4]  
+  ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258609 Sutherland])  
+  
+  131,161,149,090#? [m=5] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258626 Sutherland])  
+    
+    
+   Dec 24  
+    
+    
+   [http://math.mit.edu/~drew/admissible_41588_474320.txt 474,320]? [EH] [m=4] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258810 Sutherland])  
+  
+  [http://math.mit.edu/~drew/admissible_309661_4137872.txt 4,137,872]? [EH] [m=5] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258810 Sutherland])  
+  
+  [http://math.mit.edu/~drew/admissible_1628943_24462654.txt 24,462,654]? [m=3] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258810 Sutherland])  
+  
+  1,497,901,734? [m=4] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258810 Sutherland])  
+  
+  [http://math.mit.edu/~drew/admissible_2114964_32313878.txt 32,313,878]#? [m=3] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment258810 Sutherland])  
+    
+    
+   Dec 28  
+    
+    
+   [http://math.mit.edu/~drew/admissible_41588_474296.txt 474,296]? [EH] [m=4] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment259813 Sutherland])  
+  
+  [http://math.mit.edu/~drew/admissible_309661_4137854.txt 4,137,854] [EH] [m=5] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment259813 Sutherland])  
+    
+    
+   Jan 2 2014  
+    
+    
+   [http://math.mit.edu/~drew/admissible_41588_474290.txt 474,290]? [EH] [m=4] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment260937 Sutherland])  
+    
+    
+   Jan 6  
+    
+   54# ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment261984 Nielsen])  
+   270# ([http://math.mit.edu/~primegaps/tuples/admissible_54_270.txt ClarkJarvis])  
+    
+    
+   Jan 8  
+    
+   4 [GEH] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment262403 Nielsen])  
+   8 [GEH] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment262403 Nielsen])  
+   Using a "gracefully degrading" lower bound for the numerator of the optimisation problem. Calculations confirmed [http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comment262511 here].  
+    
+   Jan 9  
+    
+    
+   [http://math.mit.edu/~drew/admissible_41588_474266.txt 474,266] [EH] [m=4] ([http://terrytao.wordpress.com/2013/12/20/polymath8bivenlargingthesievesupportmoreefficientnumericsandexplicitasymptotics/#comments Sutherland])  
+    
+    
+   Jan 28  
+    
+    
+   [http://math.mit.edu/~drew/admissible_35146_395106.txt 395,106]? [m=2] ([http://terrytao.wordpress.com/2014/01/17/polymath8bvialowdimensionalvariationalproblem/#comment268356 Sutherland])  
+    
+    
+   Jan 29  
+    
+   3 [GEH] ([http://terrytao.wordpress.com/2014/01/28/polymath8bviiusingthegeneralisedelliotthalberstamhypothesistoenlargethesievesupportyetfurther/#comment268732 Nielsen])  
+   6 [GEH] ([http://terrytao.wordpress.com/2014/01/28/polymath8bviiusingthegeneralisedelliotthalberstamhypothesistoenlargethesievesupportyetfurther/#comment268732 Nielsen])  
+   A new idea of Maynard exploits GEH to allow for cutoff functions whose support extends beyond the unit cube  
+    
+   Feb 9  
+    
+    
+    
+   Jan 29 results confirmed [http://terrytao.wordpress.com/2014/01/28/polymath8bviiusingthegeneralisedelliotthalberstamhypothesistoenlargethesievesupportyetfurther/#comment270631 here]  
+    
+   Feb 17  
+    
+   53?# ([http://terrytao.wordpress.com/2014/02/09/polymath8bviiitimetostartwritinguptheresults/#comment271862 Nielsen])  
+   264?# ([http://math.mit.edu/~primegaps/tuples/admissible_53_264.txt ClarkJarvis])  
+   Managed to get the epsilon trick to be computationally feasible for medium k  
+    
+   Feb 22  
+    
+   51?# ([http://terrytao.wordpress.com/2014/02/21/polymath8bixlargequadraticprograms/#comment272506 Nielsen])  
+   252?# ([http://math.mit.edu/~primegaps/tuples/admissible_51_252.txt ClarkJarvis])  
+   More efficient matrix computation allows for higher degrees to be used  
+    
+   Mar 4  
+    
+    
+    
+   Jan 6 computations [http://terrytao.wordpress.com/2014/02/21/polymath8bixlargequadraticprograms/#comment273967 confirmed]  
+    
+   Apr 14  
+    
+   50?# ([http://terrytao.wordpress.com/2014/02/21/polymath8bixlargequadraticprograms/#comment297456 Nielsen])  
+   246?# ([http://math.mit.edu/~primegaps/tuples/admissible_50_246.txt ClarkJarvis])  
+   A 2week computer calculation!  
+    
+   Apr 17  
+    
+   [http://www.cs.cmu.edu/~xfxie/project/admissible/k0/sol_varpi600d7m2_35410.mpl 35,410] [m=2]* ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment302031 xfxie])  
+  [http://www.cs.cmu.edu/~xfxie/project/admissible/k0/sol_varpi600d7m3_1649821.mpl 1,649,821] [m=3]* ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment302031 xfxie])  
+  
+  [http://www.cs.cmu.edu/~xfxie/project/admissible/k0/sol_varpi600d7m4_75845707.mpl 75,845,707] [m=4]* ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment302031 xfxie])  
+  
+  [http://www.cs.cmu.edu/~xfxie/project/admissible/k0/sol_varpi600d7m5_3473955908.mpl 3,473,955,908] [m=5]* ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment302031 xfxie])  
+  398,646? [m=2]* ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment302101 Sutherland])  
+  
+  25,816,462? [m=3]* ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment302101 Sutherland])  
+  
+  1,541,858,666? [m=4]* ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment302101 Sutherland])  
+  
+  84,449,123,072? [m=5]* ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment302101 Sutherland])  
+   Redoing the m=2,3,4,5 computations using the confirmed MPZ estimates rather than the unconfirmed ones  
+    
+   Apr 18  
+    
+    
+   [http://math.mit.edu/~drew/admissible_35410_398244.txt 398,244]? [m=2]* ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment303059 Sutherland])  
+  
+  [http://math.mit.edu/~drew/admissible_1649821_24798306.txt 24,798,306]? [m=3]* ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment303059 Sutherland])  
+  
+  1,541,183,756? [m=4]* ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment303059 Sutherland])  
+  
+  84,449,103,908? [m=5]* ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment303059 Sutherland])  
+    
+    
+   Apr 28  
+    
+    
+   [http://math.mit.edu/~drew/admissible_35410_398130.txt 398,130] [m=2]* ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment316813 Sutherland])  
+  
+  [http://math.mit.edu/~drew/admissible_1649821_24797814.txt 24,797,814] [m=3]* ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment316813 Sutherland])  
+  
+  1,526,698,470? [m=4]* ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment316813 Sutherland])  
+  
+  83,833,839,882? [m=5]* ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment316813 Sutherland])  
+    
+   May 1  
+    
+    
+   81,973,172,502? [m=5] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment319900 Sutherland])  
+  2,165,674,446#? [m=4] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment319900 Sutherland])  
+  
+  130,235,143,908#? [m=5] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment319900 Sutherland])  
+   faster admissibility testing  
+    
+   May 3  
+    
+    
+   1,460,493,420? [m=4] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment321171 Sutherland])  
+  80,088,836,006? [m=5] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment321171 Sutherland])  
+  
+  1,488,227,220?* [m=4] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment321171 Sutherland])  
+  
+  81,912,638,914?* [m=5] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment321171 Sutherland])  
+  
+  2,111,605,786?# [m=4] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment321171 Sutherland])  
+  
+  127,277,395,046?# [m=5] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment321171 Sutherland])  
+   Fast admissibility testing for HensleyRichards tuples  
+    
+   May 3  
+    
+   3,393,468,735? [m=5] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment322560 de Grey])  
+  2,113,163?# [m=3] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment322560 de Grey])  
+  
+  105,754,479?# [m=4] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment322560 de Grey])  
+  
+  5,274,206,963?# [m=5] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment322560 de Grey])  
+    
+   Improved hillclimbing; also confirmation of previous k values  
+    
+   May 4  
+    
+    
+   79,929,339,154? [m=5] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment323235 Sutherland])  
+  [http://math.mit.edu/~drew/admissible_2113163_32588668.txt 32,588,668]?#* [m=3] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment323235 Sutherland])  
+  
+  2,111,597,632?# [m=4] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment323235 Sutherland])  
+  
+  126,630,432,986?# [m=5] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment323235 Sutherland])  
+    
+   May 5  
+    
+    
+   [http://math.mit.edu/~drew/admissible_2113163_32285928.txt 32,285,928]?# [m=3] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment324263 Sutherland])  
+    
+   May 9  
+    
+    
+   1,460,485,532? [m=4] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment330204 Sutherland])  
+  79,929,332,990? [m=5] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment330204 Sutherland])  
+  
+  1,488,222,198?* [m=4] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment330204 Sutherland])  
+  
+  81,912,604,302?* [m=5] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment330204 Sutherland])  
+  
+  2,111,417,340?# [m=4] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment330204 Sutherland])  
+  
+  126,630,386,774?# [m=5] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment330204 Sutherland])  
+   Fast admissibility testing for HensleyRichards sequences  
+    
+   May 14  
+    
+    
+   1,440,495,268? [m=4] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment339197 Sutherland])  
+  78,807,316,822 [m=5] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment339197 Sutherland])  
+  
+  1,467,584,468?* [m=4] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment339197 Sutherland])  
+  
+  80,761,835,464?* [m=5] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment339197 Sutherland])  
+  
+  2,082,729,956?# [m=4] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment339197 Sutherland])  
+  
+  124,840,189,042?# [m=5] ([http://terrytao.wordpress.com/2014/04/14/polymath8bxwritingthepaperandchasingdownlooseends/#comment339197 Sutherland])  
+   Fast admissibility testing for Schinzel sequences  
+    
+   May 18  
+    
+    
+   1,435,011,318? [m=4] ([http://terrytao.wordpress.com/2014/05/17/polymath8bxifinishingupthepaper/#comment345117 Sutherland])  
+  1,462,568,450?* [m=4] ([http://terrytao.wordpress.com/2014/05/17/polymath8bxifinishingupthepaper/#comment345117 Sutherland])  
+  
+  2,075,186,584?# [m=4] ([http://terrytao.wordpress.com/2014/05/17/polymath8bxifinishingupthepaper/#comment345117 Sutherland])  
+   Faster modified Schinzel sieve testing  
+    
+   May 23  
+    
+    
+   1,424,944,070? [m=4] ([http://terrytao.wordpress.com/2014/05/17/polymath8bxifinishingupthepaper/#comment351013 Sutherland])  
+  1,452,348,402?* [m=4] ([http://terrytao.wordpress.com/2014/05/17/polymath8bxifinishingupthepaper/#comment351013 Sutherland])  
+   Fast restricted greedy sieving  
+    
+   May 28  
+    
+   52? [m=2] [GEH] ([http://terrytao.wordpress.com/2014/05/17/polymath8bxifinishingupthepaper/#comment355568 de Grey])  
+  51? [m=2] [GEH] ([http://terrytao.wordpress.com/2014/05/17/polymath8bxifinishingupthepaper/#comment355656 de Grey])  
+   254? [m=2] [GEH] ([http://math.mit.edu/~primegaps/tuples/admissible_52_254.txt ClarkJarvis])  
+  252? [m=2] [GEH] ([http://math.mit.edu/~primegaps/tuples/admissible_51_252.txt ClarkJarvis])  
+   New bounds for <math>M_{k,1/(k1)}</math>  
+    
+   May 30  
+    
+    
+   [http://math.mit.edu/~drew/greedy_74487363_1404556152.txt 1,404,556,152]? [m=4] ([http://terrytao.wordpress.com/2014/05/17/polymath8bxifinishingupthepaper/#comment357073 Sutherland])  
+  [http://math.mit.edu/~drew/greedy_75845707_1431556072.txt 1,431,556,072]* [m=4] ([http://terrytao.wordpress.com/2014/05/17/polymath8bxifinishingupthepaper/#comment357073 Sutherland])  
+  
+  [http://math.mit.edu/~drew/greedy_105754837_2031558336.txt 2,031,558,336]?# [m=4] ([http://terrytao.wordpress.com/2014/05/17/polymath8bxifinishingupthepaper/#comment357073 Sutherland])  
+   Heuristically determined shift for the shifted greedy sieve  
+    
+   June 8  
+    
+    
+   [http://math.mit.edu/~drew/schinzel_3473955908_80550202480.txt 80,550,202,480]* [m=5] ([http://terrytao.wordpress.com/2014/05/17/polymath8bxifinishingupthepaper/#comment366807 Sutherland])  
+   Verification of several previous bounds  
+    
+   June 23  
+    
+    
+   [http://math.mit.edu/~drew/schinzel_3393468735_78602310160.txt 78,602,310,160]? [m=5] ([http://terrytao.wordpress.com/2014/06/19/polymath8wrappingup/#comment378098 Sutherland])  
}  }  
Line 773:  Line 1,054:  
# ?  unconfirmed or conditional  # ?  unconfirmed or conditional  
# ??  theoretical limit of an analysis, rather than a claimed record  # ??  theoretical limit of an analysis, rather than a claimed record  
−  # <nowiki>*</nowiki>  is majorized by an earlier but independent result  +  # <nowiki>*</nowiki>  is majorized by an earlier but independent or conditional result 
# <nowiki>#</nowiki>  bound does not rely on Deligne's theorems  # <nowiki>#</nowiki>  bound does not rely on Deligne's theorems  
# [EH]  bound is conditional the ElliottHalberstam conjecture  # [EH]  bound is conditional the ElliottHalberstam conjecture  
+  # [GEH]  bound is conditional the generalized ElliottHalberstam conjecture  
# [m=N]  bound on intervals containing N+1 consecutive primes, rather than two  # [m=N]  bound on intervals containing N+1 consecutive primes, rather than two  
# strikethrough  values relied on a computation that has now been retracted  # strikethrough  values relied on a computation that has now been retracted  
See also the article on ''[[Finding narrow admissible tuples]]'' for benchmark values of <math>H</math> for various key values of <math>k_0</math>.  See also the article on ''[[Finding narrow admissible tuples]]'' for benchmark values of <math>H</math> for various key values of <math>k_0</math>. 
Latest revision as of 15:38, 5 July 2015
Date  [math]\varpi[/math] or [math](\varpi,\delta)[/math]  [math]k_0[/math]  [math]H[/math]  Comments 

Aug 10 2005  6 [EH]  16 [EH] ([GoldstonPintzYildirim])  First bounded prime gap result (conditional on ElliottHalberstam)  
May 14 2013  1/1,168 (Zhang)  3,500,000 (Zhang)  70,000,000 (Zhang)  All subsequent work (until the work of Maynard) is based on Zhang's breakthrough paper. 
May 21  63,374,611 (Lewko)  Optimises Zhang's condition [math]\pi(H)\pi(k_0) \gt k_0[/math]; can be reduced by 1 by parity considerations  
May 28  59,874,594 (Trudgian)  Uses [math](p_{m+1},\ldots,p_{m+k_0})[/math] with [math]p_{m+1} \gt k_0[/math]  
May 30  59,470,640 (Morrison)
58,885,998? (Tao) 59,093,364 (Morrison) 57,554,086 (Morrison) 
Uses [math](p_{m+1},\ldots,p_{m+k_0})[/math] and then [math](\pm 1, \pm p_{m+1}, \ldots, \pm p_{m+k_0/21})[/math] following [HR1973], [HR1973b], [R1974] and optimises in m  
May 31  2,947,442 (Morrison)
2,618,607 (Morrison) 
48,112,378 (Morrison)
42,543,038 (Morrison) 42,342,946 (Morrison) 
Optimizes Zhang's condition [math]\omega\gt0[/math], and then uses an improved bound on [math]\delta_2[/math]  
Jun 1  42,342,924 (Tao)  Tiny improvement using the parity of [math]k_0[/math]  
Jun 2  866,605 (Morrison)  13,008,612 (Morrison)  Uses a further improvement on the quantity [math]\Sigma_2[/math] in Zhang's analysis (replacing the previous bounds on [math]\delta_2[/math])  
Jun 3  1/1,040? (v08ltu)  341,640 (Morrison)  4,982,086 (Morrison)
4,802,222 (Morrison) 
Uses a different method to establish [math]DHL[k_0,2][/math] that removes most of the inefficiency from Zhang's method. 
Jun 4  1/224?? (v08ltu)
1/240?? (v08ltu) 
4,801,744 (Sutherland)
4,788,240 (Sutherland) 
Uses asymmetric version of the HensleyRichards tuples  
Jun 5  34,429? (Paldi/v08ltu)  4,725,021 (Elsholtz)
4,717,560 (Sutherland) 397,110? (Sutherland) 4,656,298 (Sutherland) 389,922 (Sutherland) 388,310 (Sutherland) 388,284 (Castryck) 388,248 (Sutherland) 387,982 (Castryck) 387,974 (Castryck) 
[math]k_0[/math] bound uses the optimal Bessel function cutoff. Originally only provisional due to neglect of the kappa error, but then it was confirmed that the kappa error was within the allowed tolerance.
[math]H[/math] bound obtained by a hybrid Schinzel/greedy (or "greedygreedy") sieve  
Jun 6  

387,960 (Angelveit)
387,904 (Angeltveit)

Improved [math]H[/math]bounds based on experimentation with different residue classes and different intervals, and randomized tiebreaking in the greedy sieve. 
Jun 7 

26,024? (vo8ltu) 
387,534 (pedantSutherland) 
Many of the results ended up being retracted due to a number of issues found in the most recent preprint of Pintz. 
Jun 8  286,224 (Sutherland)
285,752 (pedantSutherland) 
values of [math]\varpi,\delta,k_0[/math] now confirmed; most tuples available on dropbox. New bounds on [math]H[/math] obtained via iterated merging using a randomized greedy sieve.  
Jun 9  181,000*? (Pintz)  2,530,338*? (Pintz)  New bounds on [math]H[/math] obtained by interleaving iterated merging with local optimizations.  
Jun 10  23,283? (Harcos/v08ltu)  285,210 (Sutherland)  More efficient control of the [math]\kappa[/math] error using the fact that numbers with no small prime factor are usually coprime  
Jun 11  252,804 (Sutherland)  More refined local "adjustment" optimizations, as detailed here.
An issue with the [math]k_0[/math] computation has been discovered, but is in the process of being repaired.  
Jun 12  22,951 (Tao/v08ltu)
22,949 (Harcos) 
249,180 (Castryck)  Improved bound on [math]k_0[/math] avoids the technical issue in previous computations.  
Jun 13  
Jun 14  248,898 (Sutherland)  
Jun 15  [math]348\varpi+68\delta \lt 1[/math]? (Tao)  6,330? (v08ltu)
6,329? (Harcos) 6,329 (v08ltu) 
60,830? (Sutherland)  Taking more advantage of the [math]\alpha[/math] convolution in the Type III sums 
Jun 16  [math]348\varpi+68\delta \lt 1[/math] (v08ltu)


60,760* (Sutherland)

Attempting to make the Weyl differencing more efficient; unfortunately, it did not work 
Jun 18  5,937? (Pintz/Tao/v08ltu)
5,672? (v08ltu) 5,459? (v08ltu) 5,454? (v08ltu) 5,453? (v08ltu) 
60,740 (xfxie)
58,866? (Sun) 53,898? (Sun) 53,842? (Sun) 
A new truncated sieve of Pintz virtually eliminates the influence of [math]\delta[/math]  
Jun 19  5,455? (v08ltu)
5,453? (v08ltu) 5,452? (v08ltu) 
53,774? (Sun)
53,672*? (Sun) 
Some typos in [math]\kappa_3[/math] estimation had placed the 5,454 and 5,453 values of [math]k_0[/math] into doubt; however other refinements have counteracted this  
Jun 20  [math]178\varpi + 52\delta \lt 1[/math]? (Tao)
[math]148\varpi + 33\delta \lt 1[/math]? (Tao) 
Replaced "completion of sums + Weil bounds" in estimation of incomplete Kloostermantype sums by "Fourier transform + Weyl differencing + Weil bounds", taking advantage of factorability of moduli  
Jun 21  [math]148\varpi + 33\delta \lt 1[/math] (v08ltu)  1,470 (v08ltu)
1,467 (v08ltu) 
12,042 (Engelsma)  Systematic tables of tuples of small length have been set up here and here (update: As of June 27 these tables have been merged and uploaded to an online database of current bounds on [math]H(k)[/math] for [math]k[/math] up to 5000). 
Jun 22  

Slight improvement in the [math]\tilde \theta[/math] parameter in the Pintz sieve; unfortunately, it does not seem to currently give an actual improvement to the optimal value of [math]k_0[/math]  
Jun 23  1,466 (Paldi/Harcos)  12,006 (Engelsma)  An improved monotonicity formula for [math]G_{k_01,\tilde \theta}[/math] reduces [math]\kappa_3[/math] somewhat  
Jun 24  [math](134 + \tfrac{2}{3}) \varpi + 28\delta \le 1[/math]? (v08ltu)
[math]140\varpi + 32 \delta \lt 1[/math]? (Tao)

1,268? (v08ltu)  10,206? (Engelsma)  A theoretical gain from rebalancing the exponents in the Type I exponential sum estimates 
Jun 25  [math]116\varpi+30\delta\lt1[/math]? (FouvryKowalskiMichelNelson/Tao)  1,346? (Hannes)
1,007? (Hannes) 
10,876? (Engelsma)  Optimistic projections arise from combining the GrahamRingrose numerology with the announced FouvryKowalskiMichelNelson results on d_3 distribution 
Jun 26  [math]116\varpi + 25.5 \delta \lt 1[/math]? (Nielsen)
[math](112 + \tfrac{4}{7}) \varpi + (27 + \tfrac{6}{7}) \delta \lt 1[/math]? (Tao) 
962? (Hannes)  7,470? (Engelsma)  Beginning to flesh out various "levels" of Type I, Type II, and Type III estimates, see this page, in particular optimising van der Corput in the Type I sums. Integrated tuples page now online. 
Jun 27  [math]108\varpi + 30 \delta \lt 1[/math]? (Tao)  902? (Hannes)  6,966? (Engelsma)  Improved the Type III estimates by averaging in [math]\alpha[/math]; also some slight improvements to the Type II sums. Tuples page is now accepting submissions. 
Jul 1  [math](93 + \frac{1}{3}) \varpi + (26 + \frac{2}{3}) \delta \lt 1[/math]? (Tao) 
873? (Hannes)

Refactored the final CauchySchwarz in the Type I sums to rebalance the offdiagonal and diagonal contributions  
Jul 5  [math] (93 + \frac{1}{3}) \varpi + (26 + \frac{2}{3}) \delta \lt 1[/math] (Tao) 
Weakened the assumption of [math]x^\delta[/math]smoothness of the original moduli to that of double [math]x^\delta[/math]dense divisibility  
Jul 10  7/600? (Tao)  An in principle refinement of the van der Corput estimate based on exploiting additional averaging  
Jul 19  [math](85 + \frac{5}{7})\varpi + (25 + \frac{5}{7}) \delta \lt 1[/math]? (Tao)  A more detailed computation of the Jul 10 refinement  
Jul 20  Jul 5 computations now confirmed  
Jul 27  633 (Tao)
632 (Harcos) 
4,686 (Engelsma)  
Jul 30  [math]168\varpi + 48\delta \lt 1[/math]# (Tao)  1,788# (Tao)  14,994# (Sutherland)  Bound obtained without using Deligne's theorems. 
Aug 17  1,783# (xfxie)  14,950# (Sutherland)  
Oct 3  13/1080?? (Nelson/Michel/Tao)  604?? (Tao)  4,428?? (Engelsma)  Found an additional variable to apply van der Corput to 
Oct 11  [math]83\frac{1}{13}\varpi + 25\frac{5}{13} \delta \lt 1[/math]? (Tao)  603? (xfxie)  4,422?(Engelsma)
12 [EH] (Maynard) 
Worked out the dependence on [math]\delta[/math] in the Oct 3 calculation 
Oct 21  All sections of the paper relating to the bounds obtained on Jul 27 and Aug 17 have been proofread at least twice  
Oct 23  700#? (Maynard)  Announced at a talk in Oberwolfach  
Oct 24  110#? (Maynard)  628#? (ClarkJarvis)  With this value of [math]k_0[/math], the value of [math]H[/math] given is best possible (and similarly for smaller values of [math]k_0[/math])  
Nov 19  105# (Maynard)
5 [EH] (Maynard) 
600# (Maynard/ClarkJarvis)  One also gets three primes in intervals of length 600 if one assumes ElliottHalberstam  
Nov 20 


Optimizing the numerology in Maynard's large k analysis; unfortunately there was an error in the variance calculation  
Nov 21  68?? (Maynard)
582#*? (Nielsen]) 59,451 [m=2]#? (Nielsen]) 42,392 [m=2]? (Nielsen) 
356?? (ClarkJarvis)  Optimistically inserting the Polymath8a distribution estimate into Maynard's low k calculations, ignoring the role of delta  
Nov 22  388*? (xfxie)
448#*? (Nielsen) 43,134 [m=2]#? (Nielsen) 
698,288 [m=2]#? (Sutherland)
484,290 [m=2]? (Sutherland) 484,276 [m=2]? (Sutherland) 
Uses the m=2 values of k_0 from Nov 21  
Nov 23  493,528 [m=2]#? Sutherland
493,510 [m=2]#? Sutherland 484,260 [m=2]? (Sutherland) 493,458 [m=2]#? Sutherland 

Nov 24  484,234 [m=2]? (Sutherland)
493,442 [m=2]#? (Sutherland) 484,192 [m=2]? (Sutherland) 

Nov 25  385#*? (xfxie)  484,176 [m=2]? (Sutherland)
493,436[m=2]#? (Sutherland) 
Using the exponential moment method to control errors  
Nov 26  102# (Nielsen)  493,426 [m=2]#? (Sutherland)
576# (ClarkJarvis) 
Optimising the original Maynard variational problem  
Nov 27  484,162 [m=2]? (Sutherland)
484,142 [m=2]? (Sutherland) 

Nov 28  484,136 [m=2]? (Sutherland
484,126 [m=2]? (Sutherland) 

Dec 4  64#? (Nielsen)  330#? (ClarkJarvis)  Searching over a wider range of polynomials than in Maynard's paper  
Dec 6  493,408 [m=2]#? (Sutherland)  
Dec 19  59#? (Nielsen)
10,000,000? [m=3] (Tao) 1,700,000? [m=3] (Tao) 38,000? [m=2] (Tao) 
300#? (ClarkJarvis)
182,087,080? [m=3] (Sutherland) 179,933,380? [m=3] (Sutherland) 
More efficient memory management allows for an increase in the degree of the polynomials used; the m=2,3 results use an explicit version of the [math]M_k \geq \frac{k}{k1} \log k  O(1)[/math] lower bound.  
Dec 20  55#? (Nielsen) 36,000? [m=2] (xfxie) 
175,225,874? [m=3] (Sutherland)
27,398,976? [m=3] (Sutherland) 26,682,014? [m=3] (Sutherland) 431,682? [m=2] (Sutherland) 430,448? [m=2] (Sutherland) 429,822? [m=2] (Sutherland)
272#? (ClarkJarvis) 

Dec 21  1,640,042? [m=3] (Sutherland)
1,631,027? [m=3] (Sutherland)

429,798? [m=2] (Sutherland)
25,602,438? [m=3] (Sutherland) 405,528? [m=2] (Sutherland)
25,533,684? [m=3] (Sutherland) 395,264? [m=2] (Sutherland) 395,178? [m=2] (Sutherland) 25,527,718? [m=3] (Sutherland)
24,490,758? [m=3] (Sutherland) 
Optimising the explicit lower bound [math]M_k \geq \log kO(1)[/math]  
Dec 22  1,628,944? [m=3] (Castryck)
75,000,000? [m=4] (Castryck) 3,400,000,000? [m=5] (Castryck) 5,511 [EH] [m=3] (Sutherland) 2,114,964#? [m=3] (Sutherland) 309,954? [EH] [m=5] (Sutherland) 74,487,363? [m=4] (xfxie) 
395,154? [m=2] (Sutherland)
24,490,410? [m=3] (Sutherland)
395,122? [m=2] (Sutherland)
1,523,781,850? [m=4] (Sutherland) 82,575,303,678? [m=5] (Sutherland) 52,130? [EH] [m=3] (Sutherland) 33,661,442?# [m=3] (Sutherland) 24,462,790? [m=3] (Sutherland) 4,316,446? [EH] [m=5] (Sutherland) 
A numerical precision issue was discovered in the earlier m=4 calculations  
Dec 23  41,589? [EH] [m=4] (Sutherland)
105,754,838#? [m=4] (Sutherland) 5,300,000,000#? [m=5] (Sutherland) 
24,462,774? [m=3] (Sutherland)
1,512,832,950? [m=4] (Sutherland) 4,146,936? [EH] [m=5] (Sutherland) 52,116 [EH] [m=3] (Sutherland) 474,600? [EH] [m=4] (Sutherland) 474,460? [EH] [m=4] (Sutherland) 4,143,140? [EH] [m=5] (Sutherland) 32,313,942#? [m=3] (Sutherland) 2,186,561,568#? [m=4] (Sutherland) 474,372? [EH] [m=4] (Sutherland) 131,161,149,090#? [m=5] (Sutherland) 

Dec 24  474,320? [EH] [m=4] (Sutherland)
4,137,872? [EH] [m=5] (Sutherland) 24,462,654? [m=3] (Sutherland) 1,497,901,734? [m=4] (Sutherland) 32,313,878#? [m=3] (Sutherland) 

Dec 28  474,296? [EH] [m=4] (Sutherland)
4,137,854 [EH] [m=5] (Sutherland) 

Jan 2 2014  474,290? [EH] [m=4] (Sutherland)  
Jan 6  54# (Nielsen)  270# (ClarkJarvis)  
Jan 8  4 [GEH] (Nielsen)  8 [GEH] (Nielsen)  Using a "gracefully degrading" lower bound for the numerator of the optimisation problem. Calculations confirmed here.  
Jan 9  474,266 [EH] [m=4] (Sutherland)  
Jan 28  395,106? [m=2] (Sutherland)  
Jan 29  3 [GEH] (Nielsen)  6 [GEH] (Nielsen)  A new idea of Maynard exploits GEH to allow for cutoff functions whose support extends beyond the unit cube  
Feb 9  Jan 29 results confirmed here  
Feb 17  53?# (Nielsen)  264?# (ClarkJarvis)  Managed to get the epsilon trick to be computationally feasible for medium k  
Feb 22  51?# (Nielsen)  252?# (ClarkJarvis)  More efficient matrix computation allows for higher degrees to be used  
Mar 4  Jan 6 computations confirmed  
Apr 14  50?# (Nielsen)  246?# (ClarkJarvis)  A 2week computer calculation!  
Apr 17  35,410 [m=2]* (xfxie)
75,845,707 [m=4]* (xfxie) 3,473,955,908 [m=5]* (xfxie) 
398,646? [m=2]* (Sutherland)
25,816,462? [m=3]* (Sutherland) 1,541,858,666? [m=4]* (Sutherland) 84,449,123,072? [m=5]* (Sutherland) 
Redoing the m=2,3,4,5 computations using the confirmed MPZ estimates rather than the unconfirmed ones  
Apr 18  398,244? [m=2]* (Sutherland)
24,798,306? [m=3]* (Sutherland) 1,541,183,756? [m=4]* (Sutherland) 84,449,103,908? [m=5]* (Sutherland) 

Apr 28  398,130 [m=2]* (Sutherland)
24,797,814 [m=3]* (Sutherland) 1,526,698,470? [m=4]* (Sutherland) 83,833,839,882? [m=5]* (Sutherland)  
May 1  81,973,172,502? [m=5] (Sutherland)
2,165,674,446#? [m=4] (Sutherland) 130,235,143,908#? [m=5] (Sutherland) 
faster admissibility testing  
May 3  1,460,493,420? [m=4] (Sutherland)
80,088,836,006? [m=5] (Sutherland) 1,488,227,220?* [m=4] (Sutherland) 81,912,638,914?* [m=5] (Sutherland) 2,111,605,786?# [m=4] (Sutherland) 127,277,395,046?# [m=5] (Sutherland) 
Fast admissibility testing for HensleyRichards tuples  
May 3  3,393,468,735? [m=5] (de Grey)
2,113,163?# [m=3] (de Grey) 105,754,479?# [m=4] (de Grey) 5,274,206,963?# [m=5] (de Grey) 
Improved hillclimbing; also confirmation of previous k values  
May 4  79,929,339,154? [m=5] (Sutherland)
32,588,668?#* [m=3] (Sutherland) 2,111,597,632?# [m=4] (Sutherland) 126,630,432,986?# [m=5] (Sutherland)  
May 5  32,285,928?# [m=3] (Sutherland)  
May 9  1,460,485,532? [m=4] (Sutherland)
79,929,332,990? [m=5] (Sutherland) 1,488,222,198?* [m=4] (Sutherland) 81,912,604,302?* [m=5] (Sutherland) 2,111,417,340?# [m=4] (Sutherland) 126,630,386,774?# [m=5] (Sutherland) 
Fast admissibility testing for HensleyRichards sequences  
May 14  1,440,495,268? [m=4] (Sutherland)
78,807,316,822 [m=5] (Sutherland) 1,467,584,468?* [m=4] (Sutherland) 80,761,835,464?* [m=5] (Sutherland) 2,082,729,956?# [m=4] (Sutherland) 124,840,189,042?# [m=5] (Sutherland) 
Fast admissibility testing for Schinzel sequences  
May 18  1,435,011,318? [m=4] (Sutherland)
1,462,568,450?* [m=4] (Sutherland) 2,075,186,584?# [m=4] (Sutherland) 
Faster modified Schinzel sieve testing  
May 23  1,424,944,070? [m=4] (Sutherland)
1,452,348,402?* [m=4] (Sutherland) 
Fast restricted greedy sieving  
May 28  52? [m=2] [GEH] (de Grey)
51? [m=2] [GEH] (de Grey) 
254? [m=2] [GEH] (ClarkJarvis)
252? [m=2] [GEH] (ClarkJarvis) 
New bounds for [math]M_{k,1/(k1)}[/math]  
May 30  1,404,556,152? [m=4] (Sutherland)
1,431,556,072* [m=4] (Sutherland) 2,031,558,336?# [m=4] (Sutherland) 
Heuristically determined shift for the shifted greedy sieve  
June 8  80,550,202,480* [m=5] (Sutherland)  Verification of several previous bounds  
June 23  78,602,310,160? [m=5] (Sutherland) 
Legend:
 ?  unconfirmed or conditional
 ??  theoretical limit of an analysis, rather than a claimed record
 *  is majorized by an earlier but independent or conditional result
 #  bound does not rely on Deligne's theorems
 [EH]  bound is conditional the ElliottHalberstam conjecture
 [GEH]  bound is conditional the generalized ElliottHalberstam conjecture
 [m=N]  bound on intervals containing N+1 consecutive primes, rather than two
 strikethrough  values relied on a computation that has now been retracted
See also the article on Finding narrow admissible tuples for benchmark values of [math]H[/math] for various key values of [math]k_0[/math].