Zero-free regions

From Polymath1Wiki
Revision as of 10:28, 29 March 2018 by Teorth (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

The table below lists various regions of the [math](t,y,x)[/math] parameter space where [math]H_t(x+iy)[/math] is known to be non-zero. In some cases the parameter

[math] N := \lfloor \sqrt{\frac{x}{4\pi} + \frac{t}{16}} \rfloor[/math]

is used.


Date [math]t[/math] [math]y[/math] [math]x[/math] From Method Comments
1950 [math]t \geq 0[/math] [math]y \gt \sqrt{\max(1-2t,0)}[/math] Any De Bruijn Theorem 13 of de Bruijn
2009 [math]t \gt 0[/math] [math]y \gt 0[/math] [math]x \geq C(t)[/math] Ki-Kim-Lee Theorem 1.3 of Ki-Kim-Lee [math]C(t)[/math] is not given explicitly.
Mar 7 2018 0.4 0.4 [math]N \geq 2000[/math] ([math]x \geq 5.03 \times 10^7[/math]) Tao Analytic lower bounds on [math]A^{eff}+B^{eff} / B^{eff}_0[/math] and analytic upper bounds on error terms Can be extended to the range [math]0.4 \leq y \leq 0.45[/math]
Mar 10 2018 0.4 0.4 [math]151 \leq N \leq 300[/math] ([math]2.87 \times 10^5 \leq x \leq 1.13 \times 10^6[/math]) KM Mesh evaluation of [math]A^{eff}+B^{eff} / B^{eff}_0[/math] and upper bounds on error terms
Mar 11 2018 0.4 0.4 [math]300 \leq N \leq 2000[/math] ([math]1.13 \times 10^6 \leq x \leq 5.03 \times 10^7[/math]) KM Analytic lower bounds on [math]A^{eff}+B^{eff} / B^{eff}_0[/math] and upper bounds on error terms
Mar 11 2018 0.4 0.4 [math]20 \leq N \leq 150[/math] ([math]5026 \leq x \leq 2.87 \times 10^5[/math]) Rudolph & [1] Mesh evaluation of [math]A^{eff}+B^{eff} / B^{eff}_0[/math] and upper bounds on error terms