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Preface

Majorization is a powerful, easy-to-use and flexible mathematical tool which
can be applied to a wide variety of problems in quantum mechanics. This
book surveys the basic results of the theory of majorization, emphasizing
the connections to quantum mechanics, and discussing a number of open
problems.

The book is based on lectures given at the University of Queensland
in 2002, and at the California Institute of Technology in 1998. Thus, the
book is organized into chapters, each of which corresponds to roughly a
one-hour lecture. However, the chapters contain supplementary material
that could not typically be covered in a one-hour lecture. Much of this
supplementary material is in the form of exercises scattered through the text,
which I encourage readers to attempt as they read. More difficult problems
may be found at the end of each chapter, along with some hints for the
exercises and problems contained in the chapter.

Structure of the book

The wide applicability of majorization to quantum mechanics arises as a
result of two simple but deep theorems connecting majorization to unitary
matrices: Horn’s lemma, and Uhlmann’s theorem. These connections, and
the ubiquity of unitary matrices in quantum mechanics, make majorization
a powerful tool for the mathematical arsenal of a quantum theorist.

In view of these connections, I begin the book with an overview chap-
ter, explaining the basic definitions of majorization, the statement of Horn’s
lemma and Uhlmann’s theorem, and giving some examples illustrating the
power of these theorems when applied to quantum mechanics.

The strategy of the remainder of the book is to build up the mathematical
theory of majorization, while interspersing applications to quantum mechan-
ics. Chapters 2 and 3 begin our development of the mathematical theory of
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majorization, building up to a powerful result of Hardy, Littlewood and Polya
connecting majorization to the doubly stochastic matrices. This connection
enables us in Chapter 5 to prove Horn’s lemma, connecting majorization to
unitary matrices and thus to quantum mechanics.

The end matter of the book contains three appendices, a bibliography,
and an index.

Points of special interest

I have tried to make the book accessible to anybody with a background in
elementary quantum mechanics. The recent developments connecting ma-
jorization to quantum mechanics have largely occurred within the new sub-
field of quantum information science, and the point of view adopted here
inevitably reflects that connection. Nonetheless, I have tried to make the
results of the text accessible to readers without a background in quantum
information science. To this end, a guide to nomenclature and notation may
be found after this preface, should you get lost in unfamiliar notation.

One of the major goals of this book is to bring the reader into the thick of
the exciting recent progress in applying majorization to problems in quantum
mechanics. To that end, throughout the book I have emphasized unsolved
problems whose solution can be expected to be related to the ideas and
techniques introduced in the text.

Throughout the text I have given references to recent papers connecting
majorization and quantum mechanics, in the hope that these will serve as
useful leads to the reader interested in pursuing further work in this area. Of
course, the usual caveats apply: despite the best of intentions, my knowledge
is limited, and my apologies to any researcher whose work I have inadver-
tently omitted from citation. For older work on the basic theory of majoriza-
tion, the historical coverage is much less complete, due in part to my own
ignorance, and in part due to the existence of standard texts on majorization
that present the history in a much more comprehensive way than is possible
in a more specialized text such as this.

In this vein, let me mention Marshall and Olkin’s classic text[38], which
gives a very nearly comprehensive coverage of both the theory and history of
majorization, up until 1979. Any reader seriously interested in majorization
will eventually need to take a good look at Marshall and Olkin. It contains a
wealth of additional material I have not covered, including many applications
of majorization outside of physics. My own introduction to majorization was



through Chapters 2 and 3 of the book by Bhatia[8], and my presentation
bears the mark of this influence. Alberti and Uhlmann[1] have also written a
more specialized monograph on majorization that may be of interest to many
readers. Finally, Ando has written an excellent pair[2; 3] of survey articles
on majorization that provide a brief introduction to the subject, and cover
much of the field’s development since the publication of Marshall and Olkin.
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Notation and nomenclature

Vectors will sometimes be written in the column format,

1]

and sometimes for readability in the format (0,1). The latter should be
understood as shorthand for the column vector, and not as a row vector. We
use the notation r and s generically to denote real vectors in a d-dimensional
real vector space. It is often convenient to re-order the components of such
a vector 7 = (ry,...,ry) into decreasing order, rt = (r%, . ,Tcll), where T% >
7’% > ... ’I“Cll. Note that we say decreasing where some readers might prefer

non-increasing; any possible ambiguity in our presentation is removed by

saying that a sequence r > s > ... is strictly decreasing. In a similar vein,
we may re-order the components of 7 into increasing order, r! = (TI, ce ,rCTl),

Whererfgrég...gr;.
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Part 1

Introduction to majorization



Chapter 1

Overview

Magjorization is a mathematical relation that allows us to determine which of
two probability distributions is more disordered. The present lecture provides
an overview of majorization and its connections to quantum mechanics. In
particular, we introduce the basic definitions of the theory of majorization in
Section 1.1, explain two fundamental results (Horn’s lemma and Uhlmann’s
theorem) connecting majorization and quantum mechanics in Section 1.2,
and give some examples applications of majorization to quantum mechanics
in Section 1.3. Finally, Section 1.4 outlines the reasons why the concept
of majorization is needed, even though other concepts such as the Shannon
entropy can be used for a similar purpose, namely, to quantify the notion
that one probability distribution is more mixed than another.

1.1 What is majorization?

The intuition motivating majorization may be understood from the follow-
ing definition: we say the d-dimensional real vector r is majorized by the
d-dimensional real vector s, written r < s, if there exist d-dimensional per-
mutation matrices P; and a probability distribution {p;} such that

r= ijPjs. (1.1)

J

That is, r is majorized by s precisely when r can be obtained from s by
randomly permuting the components of s, and then averaging over the per-
mutations. At least naively this is a natural and appealing approach to



defining the notion that one vector is more disordered than another, and we
will see that this naive appeal is more than justified by the rich mathematical
structure arising from this definition.

As a simple example of majorization, suppose the vector s is a probability
distribution on d outcomes, that is, the components are non-negative and sum
to one. Then it is easy to see that

(é,,é) < s, (1.2)

since the uniform distribution (1/d,...,1/d) may be obtained by averaging
over permutations P,s of s, where m is chosen uniformly at random from
the symmetric group on n elements. This simple example agrees with our
intuition that the uniform distribution on d elements is as or more disordered
than any other probability distribution over d elements. It also illustrates a
point that will be generically true throughout these notes: most often we use
majorization to compare two probability distributions, that is, real vectors
whose components are non-negative and sum to one.

Our definition for the majorization relation r < s in terms of random
permutations is satisfying from an intuitive point of view, and is often useful
when proving theoretical results, but is perhaps not so useful for actual calcu-
ations. Given two vectors of numbers r and s is there an effective procedure
to determine whether » < s? Remarkably, such a procedure exists. First,
we re-order the components of r and s into non-increasing order, writing, for
example, rt = (T%, e ,Tcll) for the vector whose components are the same as
those of r, but ordered so that

rE>rs > >k (1.3)

We prove in Chapter 3 that r < s if and only if

4 4

ry < s7
T% + T% < s% + s% (1.5)
r{—i—r%—i—ré < s{+s§+s§
i < st 4 sh (1.7)

7"%—1—...4—7“}[ 5{4—...—1—53



Note the equality appearing in the last expression. One way of looking at
this equality is that any permutation of s leaves the sum of the components
invariant, as does averaging over a set of permutations, and thus r and s
must have the same sum. In any case, in the applications we shall be most
concerned with, » and s are probability distributions, and thus the equality
is automatically satisfied.

Exercise 1.1.1: (Majorization and triangles) Let 60y, 60,,03 be the an-
gles of a triangle, expressed in radians. Show that

T
- T, 01,0,,0 0,0). 1.9

<3a373)‘<(1a 273)—<(7T7a) ( )
Find vectors a and b such that the conditions a < (61, 6,,03) < b char-
acterize (a) the acute triangles and (b) the obtuse triangles. A wide
variety of geometric inequalities follow from the techniques of majoriza-

tion. See Chapter 8 of Marshall and Olkin[38].

1.2 What connects majorization and quan-
tum mechanics?

What connections are there between majorization and quantum mechanics?
The quantum mechanical analogue of a probability distribution is the density
matrix, so a natural beginning is to define a matrix notion of majorization.
Supposing R and S are d-dimensional Hermitian matrices, we define R < S
(read “R is majorized by S”) if A(R) < A(S), where A(R) denotes the vector
whose components are the eigenvalues of R, arranged in non-increasing order.
Just as for vectors we are mostly concerned with the majorization relation for
probability distributions, so for matrices we will mostly be concerned with
the majorization relation for density matrices.

As an example of matrix majorization, suppose p is any density matrix
for a quantum system with a d-dimensional state space. Then I/d < p,
where I/d is the completely mixed state. This follows immediately from
the observation made in the previous section that the uniform probability
distribution on d outcomes is majorized by any other probability distribution
on d outcomes.



Exercise 1.2.1: (Majorization on the Bloch sphere) Let @ and b be
real three-dimensional vectors of length at most one, and let p, and py
be the qubit states with Bloch vectors @ and b, that is,

pa=I+a-3))2 p=(I+b-3)/2. (1.10)
Show that p, < pp if and only if ||a|| < ||b]|.

The essential reason for the close connection between majorization and
quantum mechanics may be appreciated by inspection of two elegant (and
closely related) results: Horn’s lemma and Uhlmann’s theorem. Horn’s lemma
states that for vectors r and s, r < s if and only if r; = 3, |uij|23j for some
unitary matrix v = (u;;) of complex numbers. Uhlmann’s theorem states
that R < S for Hermitian matrices R and S if and only if there exist unitary
matrices U; and a probability distribution {p,} such that

R=Y p,U;SUI. (1.11)
J

The fundamental place of unitarity in quantum mechanics ensures that re-
lations of the type featuring in Horn’s lemma and Uhlmann’s theorem arise
frequently, and it is this which accounts for many of the applications of ma-
jorization to quantum mechanics.

1.3 Applications of majorization to quantum
mechanics

In this section we take a quick peek at some specific applications of majoriza-
tion to quantum mechanics, leaving the proofs until later.

On the probability of measurement outcomes

Suppose a quantum system with d-dimensional state space is in a state de-
scribed by a density matrix p with vector of eigenvalues A(p) = (A1(p), ..., Aa(p)),
so that p = >, Aj(p)|j)(j|, where |j) are orthonormal eigenvectors of p .
Suppose we measure the system in an orthonormal basis |e;). Then result k
occurs with probability

pk) = {exlplex) (1.12)
= Al (1.13)

5



where uj;, = (ex|j) is a unitary matrix. From Horn’s lemma it follows that
the probability distribution (p(k)) is majorized by A(p). Conversely, given a
probability distribution (p(k)) majorized by A(p), Horn’s lemma implies that
there exists an orthonormal basis |e;) such that measuring p in that basis
will give the outcome k with probability p(k). We have proved the following
theorem:

Theorem 1.3.1: Let p be a density matrix. Then there exists an
orthonormal basis |e) such that a measurement in the basis |ey)
yields probabilities p(k) if and only if (p(k)) < A(p).

Exercise 1.3.1: Let p be an arbitrary state of a d-dimensional quantum
system. Prove that there always exists an orthonormal basis |e;) such
that the probabilities for a measurement in that basis are uniformly
distributed. Given p can you explicitly construct a basis |e) such that
this is true?

Quantum measurement without post-selection

Suppose a quantum system is in the state p, and a von Neumann mea-
surement described by a complete set of orthonormal projectors Py, ..., P,
occurs. To an observer who does not learn the result of the measurement
the state of the system after the measurement is described by the posterior
density matrix:

=2 PipP;. (1.14)
J
We will use Uhlmann’s theorem to show that p’ < p, which makes precise the
intuitive notion that p’ is “more mixed” than p. Define matrices Uy, ..., U,
by
Up =Y wi*p;, (1.15)
J

where w = exp(27i/n) is an nth root of unity. Note that the matrices Uy, are
unitary matrices. Furthermore, for any density matrix p,
Sk UepUL _ Sjjon 24Py, pP,

e - . (1.16)




Substituting 3=, wth92k = ng; . gives

> UrpU]l

J

and thus, by Uhlmann’s theorem, p’ < p. We have proved the following
theorem:

Theorem 1.3.2: Let p be a density matrix, and P; a complete
set of orthonormal projectors. Then the posterior density matrix
P’ = 3; PjpP; satisifies p’ < p.

Exercise 1.3.2: Suppose p is a single-qubit state subjected to a von Neu-
mann measurement, with posterior state p’. Show that the Bloch vector
of p/ is never longer than the Bloch vector of p. Thus, the process of
measurement moves the density matrix toward the middle of the Bloch
sphere.

Characterizing the probabilities that appear in a decomposition of
a density matrix

The next result is a beautiful constraint on the static properties of the density
matrix. A given density matrix p may be represented in many different ways
as an ensemble {7, [¢;)} of pure states,

p=2_rils) Wl (1.18)

We show in Appendix C that for a fixed vector r = (r;) of probabilities there
exists a set of pure states |¢;) such that (1.18) is true if and only if < A(p).
(Note that either A\(p) or r may need to be “padded” with extra zeroes in
order that they have the same dimension, and thus be comparable using
the majorization relation.) Thus there is a fundamental connection between
the static properties of the density matrix and majorization, a connection
which we will see has implications for other fundamental quantities such as
measurement probabilities.



Quantum measurements acquire information about the system be-
ing measured

Our final example of an application of majorization to quantum mechan-
ics is a set of dynamical constraints on quantum measurement. Intuitively,
we know that quantum measurements acquire (rather than lose) informa-
tion about the system being measured. We'll see that this intuition can be
made mathematically precise: if p is the initial state of a quantum system
being measured and p,, are the post-measurement states conditioned on the
measurement result m occurring, then we show in Chapter 6 that

A(p) =< pmA(pm), (1.19)

where p,, is the probability for measurement outcome m. Thus, the eigen-
values of the initial state are more disordered than the average eigenvalues of
the post-measurement state, in accord with our intuition that quantum mea-
surements acquire information. A type of converse to this result also holds:
provided an equation similar to (1.19) holds (with some additional technical
restrictions), it is possible to find a quantum measurement which gives the
post-measurement state p,, with probability p,, when performed with p as
the initial state. Thus majorization provides a natural language to express
sharp fundamental constraints on the ability of quantum measurements to
acquire information about a quantum system.

1.4 Why do we need the concept of majoriza-
tion?

Despite the applications to quantum mechanics that we’ve seen, you might
ask why we need the notion of majorization when measures of disorder such
as the Shannon and von Neumann entropies are already available? Couldn’t
these other measures be put to the same use in applications as we put ma-
jorization? These are good questions.

It turns out that the entropic measures arise naturally out of the theory
of majorization in a sort of “law of large numbers limit” where we are con-
sidering a large number of identical systems. We'll examine how this works
in detail in Chapter 8, but the essential point is that measures such as the
entropy are essentially weaker than the notion of majorization, and as such



do not give as much detailed information as is provided by majorization.
In particular, we will show that the tools of majorization can be applied to
problems for which the concept of entropy is insufficient for the analysis.

Exercise 1.4.1: Let r and s be probability distributions such that r < s.
Assume, as was stated earlier, that there exist probabilities p; and
permutations P; such that r = 37, p;P;s. Use this fact to prove that
H(r) > H(s), where H(r) = — 3, 7;log(r;) is the Shannon entropy of
a probability distribution. Note that we use the information-theoretic
convention that logarithms are always taken to base two, unless other-
wise noted.

Problems for Lecture 1

Problem 1.4.1: (Alternate proof of Theorem 1.3.2) Show that }°; P;pP; <
p for a complete orthonormal set of projectors by proving the result for
a set of two orthonormal projectors, and then using induction.

Hints for Lecture 1

Hint for Exercise 1.3: The basis |e;) to measure in is the Fourier trans-
form of the eigenbasis of p.



Chapter 2

Elementary properties of
majorization

This lecture begins our in-depth investigation of majorization by exploring
some elementary properties of the majorization relation. In the last lecture
we discussed several equivalent characterizations of majorization, each of
which could potentially be used as a fundamental definition. Section 2.1
fixes a single fundamental definition for the majorization relation, which
we use as the basis for all our later development, and explores the most
basic properties of that relation. An occasionally irritating aspect of our
fundamental definition is that in order to use it to compare two vectors,
r and s, it is necessary to order the components of the vectors into non-
increasing order. Section 2.2 gives a useful alternative characterization of
majorization that does not require such an ordering, and which we therefore
refer to as the order-free characterization of majorization.

2.1 Definition and most basic properties

We begin by fixing our fundamental definition of the majorization relation:
r=(r,...,mq) < 5= (51,...,5q) if

T% < s%
r%—kr% < s%%—s%
7’{4—7’%4—7& < s{+s§+s§



Mt < st 4sh (2.4)
r%—i—...—i—rcll = s%—l—...—i—sé.

It will be Convenient to Write the last equation in one of two different forms;
either Z 1 ] = ] 1 j or Z = Z;l:l sj. Since the sum is over all
components of the vectors, the orderlng does not matter. The definition of
Equations (2.1)-(2.5) has the substantial advantage that it provides an easy
and obvious computational procedure for comparing two vectors. Working
from this definition we will establish a wide variety of elementary properties
of majorization, eventually arriving in the next lecture at the equivalent
characterization described in the last lecture, namely, that » < s if and only
if r = 3=, p;jP;s for some probabilites {p;} and permutation matrices P;.

In Equations (2.1) through (2.5) we have defined majorization in terms of
a non-increasing order on the elements of the vectors being compared. Not
surprisingly, there is an equivalent definition in terms of a non-decreasing
order on the elements of the vectors being compared. Let 1 = (rl, ... ,T;)
denote the vector whose elements are the elements of r re-ordered into non-
decreasing order,

r<r}<.. <) (2.6)
Then we have the following characterization of majorization:

Theorem 2.1.1: r < s if and and only if

k k
ZT]T- > Zs}, (2.7)

j=1 j=1
for k =1,...,d, with equality when k£ = d.

Proof: 1t is clear that the condition Zle 7"; = Zle s} is equivalent to the

condition 3¢ i1 r] = ?:1 sjl, so we need only check that the inequality (2.7)

is equivalent to the inequality in the standard definition of majorization. To
see this, define T' = Zle Ty = 2?11 s; and note that for k =1,...,d -1,

d—k k

k d—k
Sory=T—=3r; Yos;=T-3 s (2.8)
1 j=1 j=1

Jj=1

<.



By substitution of these equations, it follows that

TJT» > ZSJT (2.9)

k
=1 j=

J

<
[y

if and only if

d—k d—k

rE <N sh (2.10)

j=1

<
I

<.
I
—

which establishes the desired equivalence. B
Two variants of majorization are sometimes also useful. Let r and s be
d-dimensional real vectors. Then r is sub-majorized by s, written r <., s, if

[y

k
Srr< S s (2.11)
j=1

<

for each k in the range 1 through d. The only difference between sub-
majorization and majorization is the omission of the equality requirement
at k = d in the definition of sub-majorization. Similarly, we say that r is
super-magorized by s, written r <% s, if

k k
S>3 (2.12)

=1 =1

for each k in the range 1 through d.
Theorem 2.1.2:

. r < sif and only if r <, s and r <% s.

. r < sif and only if —r < —s.

1
2
3. Let a be any real number. Then r < s implies ar < as.
4. The relations <, <, and <" are reflexive and transitive.
5

.r < sand s < r if and only if r is a permutation of the
elements of s, that is, rt = s'.

Proof:

12



. The forward implication follows immediately from the definition of r <
s and Theorem 2.1.1.

To see the reverse implication, note that since r <, s and r <% s we
have, respectively:

j=1 j=1 j=1 " j=1 j=1 j=1 j=1 =1

and thus Z?Zl rj = Z?Zl sj. Together with the conditions for r <,, s
this implies that r < s.

. Suppose r < s. Then some simple algebra and Theorem 2.1.1 yield
k

(—r); = - er} <- le} = Zl(—s)j., (2.14)

7j=1

with equality when k = d, so —r < —s. If —r < —s then the previous
argument shows that —(—r) < —(—s), so r < s, and thus r < s if and
only if —r < —s.

. Suppose 7 < s and a > 0. It is clear that ar < as. Combining this
observation with the previous result completes the proof.

. All these results follow immediately from the transitivity and reflexivity
of the relation < on the real numbers.

. A straightforward induction shows that 7"]1. = s]l- forj=1,...,d.

Since the relation < is transitive it defines a partial pseudo-order on

real vectors. If we restrict ourselves to the comparison of ordered vectors r
and s, that is, vectors such that r = ! and s = s!, then < forms a true
partial order, and that is the terminology we will mostly use. Majorization
gives only a partial rather than a total order on ordered vectors, since there
are vectors r and s which are incomparable in the sense that r £ s and
s A r, where r £ s means that r is not majorized by s. An obvious way in
which this may occur is if Z;l:l r; # Z;l:l sj. However, even when the total
sums of the elements of the vector are the same, as for the comparison of

13



two probability distributions, the phenomenon of incomparability may still
occur. An example is the two probability distributions:

= (0.5,0.25,0.25); s = (0.4,0.4,0.2). (2.15)

Note that st = 0.4 < 0.5 = rda, so r 4 s. Similarly, 4 =075 < 0.8 =
s% + s%, so s A4 r. Note that it is often useful to have examples of vectors
incomparable by the majorization relation, and we will use the example of
Equation (2.15) several times in later lectures.

Exercise 2.1.1: Suppose r = (p,1 —p) and s = (¢,1 — q) are two two-
element probability distributions. Show that r and s are always com-
parable. That is, either » < s, or s < 7.

2.2 An order-free characterization of majoriza-
tion

The definition of majorization in Equations (2.1)-(2.5) requires that the ele-
ments of the vectors to be compared are ordered in decreasing order. There
is a useful alternate characterization of majorization that does not require
such an ordering:

Theorem 2.2.1: (Order-free characterization)
r < s if and only if 2?21 T = Z?Zl s;, and for all real ¢,

;(Tj )" < ;(Sj — 1), (2.16)

where 2™ = max(z,0) is the positive part of any real number.
Proof: 'We show the forward implication first. Suppose r < s and let ¢ be

any real number. We analyse three cases.
Case 1: ¢ < r:. Then (7“]l —t) > 0 for all j, and thus

D=t =3 (-1 < ;(Sj —t) <> (s;—t)" (2.17)

]:1 ]:1 _]:1

14



Case 2: r{ < t. Then (r; —t)* = 0 for all j and thus

zdj )t = gzdj (2.18)

Case 3: For some £, rlﬁﬂ <t <ry. Then

Z:(rj—t)Jr = Z:lr —1) ; s;—t) <D (s;—0)".  (2.19)

j=1

Conversely, suppose Equation (2.16) holds for all ¢. Set t = s,lg +1- Then

Mw
—

=
Sl

|

~
N—

+

i(rﬁ- —1) <

> > (2.20)
< i(rj—tﬁ (2.21)
< zd:l(sj—t)* (2.22)
= zkj(s}—t) (2.23)

<
I
—

Adding kt to both sides gives ZJ 1 ] Z] 1 ], and by the assumptions of
L _ 1

the theorem we already know Zj 1T = Zle i, S0 1 <8, as we set out to
show. ®

Exercise 2.2.1: (Extension property of majorization) Show thatr <
s implies that (r,u) < (s,u) for any vector w.

Exercise 2.2.2: Let e be the d-dimensional vector containing all 1s. Show
that if » < s then r + ae < s + ae, for all real a.

Exercise 2.2.3: Find an example of vectors r,s,t such that » < s but
r+tAs+t.

Exercise 2.2.4: Show that for any ¢ which is not a multiple of the vector
e of all 1s, there exist r and s such that r <'s, but r +¢ £ s+ t.
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Hints for Lecture 2

Hints for Exercises 2.2 and 2.2: Use the order-free characterization of
majorization, Theorem 2.2.1.
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Chapter 3

Double stochasticity and
majorization

Thus far we have two equivalent definitions for majorization, one in terms
of a set of inequalities, (2.1)-(2.5), the other the order-free characterization
of majorization, Theorem 2.2.1. In this chapter we will use the order-free
characterization to develop a truly powerful characterization of majorization
in terms of doubly stochastic matrices.

3.1 Introduction

A real d by d matrix D = (D;;) is doubly stochastic if the entries of D are
non-negative, and each row and column of D sums to 1. A simple example
of a doubly stochastic matrix is

D:[lt_t 1?], (3.1)

where ¢ is a parameter in the range 0 to 1. This is the most general 2 by 2
doubly stochastic matrix; once the parameter in the top left corner is chosen,
it determines the entries in the bottom left and top right, since columns and
rows sum to 1, and these entries in turn determine the entry in the bottom
right.

Doubly stochastic matrices can be interpreted as a type of noisy commu-
nications channel. Imagine a channel has as input some probability distri-
bution (p;), and an output distribution (gx). The output probabilities are
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linearly related to the input probabilities by a set of transition probabilities
p(klj),

g = 2_p(kli)ps. (3.2)

Generically, these transition probabilities are non-negative and satisfy the re-
lation Y, p(k|j) = 1, since, given some fixed input j, the respective probabil-
ities p(k|7) for all the different possible outpts k must sum to one. Supposing
we regard the entries Dy; of a doubly stochastic matrix D as transition prob-
abilities for a noisy channel, then both these requirements are satisfied. The
property of double stochasticity also gives rise to an additional constraint, if
the entries of D are to be regarded as transition probabilities:

S o) =3 Dy =1, (33)

a requirement which is not generically true for all sets of transition probabil-
ities p(k|j). This extra constraint corresponds to the requirement that the
uniform distribution (1/d,1/d,...,1/d) is a stationary state of the channel.
This may be seen by observing that the requirement that the rows of D sum
to one is equivalent to the condition that

1 1
d d
1 1
D|4|=]17]. (3.4)
1 1
d d

Summarizing, a matrix D is doubly stochastic if and only if D can be thought
of as a matrix of transition probabilities for a noisy channel with the uniform
distribution as a stationary state.

Exercise 3.1.1: Show that the set of d by d doubly stochastic matrices is
a convex set. That is, show that given doubly stochastic matrices D
and F, the convex combination pD + (1 — p)E, for 0 < p < 1, is also
doubly stochastic.

Exercise 3.1.2: Show that D is doubly stochastic if and only if the trans-
pose DT is doubly stochastic.

Exercise 3.1.3: Show that if D and E are doubly stochastic then the prod-
uct DFE is doubly stochastic.
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Exercise 3.1.4: To what well-known noisy channel does the doubly stochas-
tic matrix in (3.1) correspond?

The remainder of this section is devoted to proving two fundamental
theorems linking majorization and double stochasticity.

Theorem 3.1.1: D is doubly stochastic if and only if Dr < r for
all r.

Proof:
Suppose D is doubly stochastic. Then for any real ¢,

.
S ((Dr);—t)F =3 (; Dijy(ry — t)) : (3.5)

J J
where we have applied the fact that Y, Dj; = 1. By the convexity of the

function ()™ and the double stochasticity of D, we deduce that

Z (Dr); —t)" < zk;Djk (rp—1)" (3.6)
= Z (Tk — t)Jr . (37)

j
k
By the order-free characterization of majorization, Theorem 2.2.1 on page 14,
it follows that Dr < r.

Conversely, suppose Dr < r for all r. Let e = (1,1,...,1) be the vector
containing all 1s. Then De < e. But e < r for any vector r whose components
sum to d. Thus De < e and e < De, which implies that De = e, that is,
the rows of D sum to one. Next, let e; be the vector with a single 1 in the
1th position, and zeroes elsewhere. Then De; < e;, which implies that all
the entries of De; must be non-negative, since by Theorem 2.1.1 on page 11
the smallest component of De; must be at least as large as the smallest
component of e;. But De; is the ith column of D, so we see that all the
entries of D are non-negative. Finally, since De; < e; the entries of De; must
have the same sum as the entries of e¢;. That is, the columns of D all sum to
1, which concludes the proof that D is doubly stochastic. ®

The simplest non-trivial doubly stochastic matrix is the T-transform. A
T-transform acts trivially on all but 2 dimensions, in which it has the form
of a 2 by 2 doubly stochastic matrix,

T:llit 1;’5], (3.8)
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for some parameter t, 0 < t < 1. As the following theorem shows, for the
purposes of understanding majorization it is sufficient to consider doubly
stochastic matrices which are products of T-transforms.

Theorem 3.1.2: The following statements are equivalent:

1. r < s.

2. r =T\T,...T,s, where n is finite and the matrices T} are
T-transforms.

3. r = >2;p;P;s, for some set of probabilities, p;, and permu-
tation matrices, P;.

4. r = Ds for some doubly stochastic matrix D.

Proof:

1 = 2: Suppose r < s. We will prove the result by induction on d, the
dimension of the vector space r and s live in. For notational convenience we
assume that the components of r and s have been ordered into decreasing
order. The result is clear when d = 1, so let’s assume the result is true for d,
and try to prove it for d 4+ 1-dimensional r and s.

Choose k such that s, < r; < s,_1. Such a k is guaranteed to exist
because r < s implies that r; < s; and r; > r4 > s4. Choose t such that

ry =tsy + (1 —t)sy. (3.9)

Now define z to be the result of applying a T-transform 7" with parameter ¢
to the 1st and kth components of s, so that

z = Ts (3.10)
= (tSl -+ (1 — t)Sk, S92, ...,8k—-1, (1 — t)Sl -+ tSk, Sk41y-- -, 8d+1)(3.11)
= (Tl’S,)7 (312)
where
s’ = (SQa <oy Sk—1, (1 - t)sl + tsg, Sk41y+ -+ Sd-l—l)' (313)

Define v’ = (r9,73,...,74+1). We aim to show that 7 < s’ and then apply
the inductive hypothesis. Suppose 1 < m < k — 2. Then since sy > ... >
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Sk—1 =>T1 = Sk =

. > 8441 it follows that

m
/ —_—
er =

J=1 Jj=2

IA
WE
N

Next, consider the case when £k — 1 < m < d. Then

AL

J

Thus 7’ < s'.

1

>

By the inductive hypothesis, ' = T7 ..

> .
1]z
_
V)
ol

- m+1
dSosi+[(I—t)si+ts] + > sy
7j=2 j=k+1
m+1

Zsj—tsl—i—(t—l)

(3.14)

(3.15)
(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
(3.23)

(3.24)

.T,,s" for some sequence

of T-transforms on d dimensions. But the T-transforms can equally well be
regarded as T-transforms on d + 1 dimensions by acting trivially on the first

dimension, and thus r =17 ..

finite sequence of T-transforms, as we set out to show.
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2 = 3: Suppose r = 11T, ...T,s. Each T; can be written as a convex
combination of permutation matrices. Products of permutation matrices are
permutation matrices. Thus r = >, ppPrs for some set of probabilities py
and permutation matrices, Py.

3 = 4: Suppose r = >, p; P;s for some probability distribution, p;, and
permutation matrices P;. It is easy to check that D = 32, p;P; is doubly
stochastic, and thus r = Ds for some doubly stochastic D.

4 = 1: This has already been proved in Theorem 3.1.1.

|

Exercise 3.1.5: Find an example of vectors r and y and a doubly stochastic
matrix D such that » <y but Dr £ Dy.

Exercise 3.1.6: Prove that not all doubly stochastic matrices are products
of T-transforms.

Theorem 3.1.2 implies that » = =, p; P;s for probabilities p; and per-
mutation matrices P; if and only if » = Ds for doubly stochastic D. This
suggests a natural representation theorem for doubly stochastic D as those
matrices which can be written in the form D = 37, p; P;. In one direction this
representation is easy to show. Namely, any matrix which can be written in
the form 37, p; P; is necessarily doubly stochastic. Surprisingly, the converse
is more difficult to show; it does not seem to follow easily from 3.1.2, for
example. However, the converse is true, and this representation theorem
for doubly stochastic matrices is known as Birkhoff’s theorem. Birkhoff’s
theorem may be stated as follows:

Theorem 3.1.3: (Birkhoff’s theorem (Birkhoff 1946 [9]))
A d by d matrix is doubly stochastic if and only if it can be
written in the form

D=YpP; (3.25)
J

for some set of probabilities p; and permutation matrices P;.

We prove Birkhoff’s theorem in Appendix A. Note that the statement
of the theorem in the appendix is slightly different, though equivalent, to
that above. The statement in the appendix stressing the connections with
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convex analysis, while the statement above is in language stripped of the
terminology of convex analysis, while containing the same essential content.

For the purposes of our study of majorization, we will have little occa-
sion to use Birkhoft’s theorem, with most of our further development based
on Theorem 3.1.2. Nonetheless, as Theorem 3.1.2 indicates, the concept of
double stochasticity is critical in the study of majorization, and Birkhoft’s
theorem is therefore of interest as one of the deepest results about doubly
stochastic matrices. Furthermore, the ideas used in the proof of Birkhoff’s
theorem are beautiful, useful, and stimulate many other interesting questions
and connections, both within the theory of majorization, and in other areas
of mathematics, making it worthwhile to spend time in the study of the proof
given in the appendix.
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Part 11

Elementary applications of
majorization to quantum
mechanics
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Chapter 4

Matrix majorization

So far we have been concerned with majorization between two vectors of real
numbers, mostly vectors representing probability distributions. In quantum
mechanics the object analogous to a probability distribution is the density
matrix, so it is natural to consider matrix generalizations of majorization. If
A and B are Hermitian matrices then we define A < B, A is majorized by
B, if A(A) < A(B), where A(A) is the vector of eigenvalues of A, arranged
into non-increasing order.

The purpose of this chapter is to study the properties of matrix majoriza-
tion. In the previous chapter, Theorem 3.1.2 showed that vector majorization
could be characterized using doubly stochastic matrices. In Section 4.1 we
will prove Uhlmann’s theorem, which generalizes Theorem 3.1.2 to matrices,
showing that matrix majorization can be characterized in terms of quantum
operations, which are maps of matrices to matrices. Section 4.2 presents
some applications of this theorem to understanding the properties of entropy
under quantum dynamical quantum processes.

4.1 Characterizing matrix majorization using
quantum operations

Matrix majorization is connected with the theory of doubly stochastic quan-
tum operations in a way analogous to the connection between vector ma-
jorization and doubly stochastic matrices. A quantum operation is a map
from density matrices to density matrices which represents the dynamical
evolution in a quantum system. A review of the theory of quantum opera-
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tions, and further references, is presented in Appendix B. Here we present
only the most salient facts. In general, a quantum operation £ may be written
in the operator-sum representation

E(p) = 3 EipE}. (4.1)

where {E};} is a set of matrices known as operation elements for the quantum
operation £. The quantum operation represents a change in the state of a
quantum mechanical system, with p being the initial state of the system, and
E(p) being the final state of the system.

To represent a physical evolution, a quantum operation must satisfy the
trace-preserving property, tr(€(p)) = tr(p) = 1. With a little thought, this
can be shown to be equivalent to the completeness relation,

Z@@:L (4.2)
J

A quantum operation with operation elements satisfying this property is a
trace-preserving quantum operation.

A simple example of a quantum operation is the unitary evolution of
a system according to a unitary matrix, U, £(p) = UpU'. Note that this
satisfies the completeness relation, since UTU = I. A less trivial example of
a quantum operation is a qubit subjected to random rotations about the z
axis of the Bloch sphere, according to some probability distribution Pr(6).
This process can be described by the quantum operation

p— E(p) = [ dOp(O)R(0)pR-(6)', (4.3)

where R,(0) = exp(—iZ/2) is the unitary matrix describing a rotation of
the Bloch sphere by an angle # about the z axis, and Z is the Pauli sigma
z matrix. Regarding the integral as a sum we can see that this process is
already written in the operator-sum representation (Equation (4.1)), with
operation elements ,/p(6)R.(6)+/d6.

There are many more examples of quantum operations. Indeed, essen-
tially all quantum dynamical processes can be described by trace-preserving
quantum operations, including complex processes such as decoherence and
dissipation caused by interaction with the environment. The exception to
this rule is processes where post-selection on measurement outcomes is al-
lowed. For example, if we measure a qubit, then the state of the qubit
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conditional on a particular measurement outcome will not be related to the
initial state by a trace-preserving quantum operation. However, even in the
case of measurements with post-selection, it turns out to be possible to use
non trace-preserving quantum operations to describe the dynamics; see Ap-
pendix B for a description of how this is done.

Conversely, given any set of matrices satisfying the completeness relation,
Equation 4.2, it turns out that there is a physical process that gives rise to
that dynamical evolution. See Appendix B for details of how this is proved.

Exercise 4.1.1: A physically important example of a quantum operation
is the process of amplitude damping on a single qubit. The amplitude
damping operation has operation elements

R [ v B

where 0 < v < 1 is a parameter. Show that these operation elements
satisfy the completeness relation, Equation (4.2), so amplitude damping
is a trace-preserving quantum operation. Show that

5<lg 1gpbzlp+v<01—p> 1_p_07(1_p)]_ (4.5)

The amplitude damping channel gets its name from the fact that it
moves a fraction v of the population in the state |1) into the state
|0), as illustrated by the previous equation. Physically, such a process
arises, for example, during spontaneous emission from a two-level atom
with excited state |1) into the ground state |0).

Many physically important quantum operations £ are unital, meaning
that the identity matrix is a fixed point, £(I) = I. In terms of the operation
elements this may be expressed as

S EEl =1 (4.6)
J

Dividing by the dimension, d, of state space, this condition may be expressed
equivalently as £(I/d) = I/d, so the physical significance of unitality is
that the completely mixed state is a fixed point of the operation. We say
a quantum operation is doubly stochastic if it is both trace-preserving and
unital. The doubly stochastic quantum operations will be our main object
of interest in this chapter.
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Exercise 4.1.2: Show that a unitary quantum operation is doubly stochas-
tic.

Exercise 4.1.3: Show that the quantum operation of Equation (4.3) is dou-
bly stochastic.

Exercise 4.1.4: Not all physical quantum operations are doubly stochastic.
Show that the quantum operation for amplitude damping is not doubly
stochastic.

An interestin special class of doubly stochastic operations is the ran-
dom unitary operations. Suppose p; is a probability distribution and U; are
unitary matrices. Imagine that a quantum system undergoes evolution ac-
cording to a unitary matrix U; chosen at random with probability p;. This
corresponds to the quantum operation

E(p) = ZPjUjPUJT, (4.7)

with operation elements ,/p;U;. £ is trace-preserving, since 3, ijjT U;=1,
and unital since 3, ijjU]T = [. Thus random unitary operations are also
doubly stochastic. We will see below that for the case of single qubits the
doubly stochastic quantum operations correspond precisely to the random
unitary operations, but in higher dimensions the random unitary operations
form a strict subset of the doubly stochastic operations.

The following theorem characterizes majorization in terms of doubly
stochastic and random unitary quantum operations. It is a matrix analogue
of the result that r < s if and only if there exists doubly stochastic D such
that r = Ds.

Theorem 4.1.1: ((Uhlmann’s theorem))
Let A and B be Hermitian matrices. Then the following three
conditions are equivalent:

1. A< B.

2. There exists a random unitary quantum operation £ such
that A = E(B).

3. There exists a doubly stcohastic quantum operation £ such
that A = E(B).
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The connection between majorization and quantum mechanics, including
this theorem, is due to Uhlmann[56, 57, 58, 59]. Some of Uhlmann’s results
were later generalized by Wehrl to the infinite dimensional case[64]. Many,
though not, all of these results are collected in Wehrl’s review paper[65].
Proof: We show that 1 — 2 — 3 — 1. Suppose first that A < B. Let A(M)
denote the diagonal matrix whose entries are the eigenvalues of M, arranged
into decreasing order. Because A and B are Hermitian, there exist unitary
U and V such that

A=UANAU;, B=VADB)V. (4.8)

Since A < B there exist permutation matrices P; and probabilities p; such
that

MA) = X, PAB). (49)
j
Straightforward matrix algebra can be used to check that this implies
A(A) = Y p;PA(B)P]. (4.10)
j
Comparing with Equation (4.8) gives
A = Y pUPVIBVPIU! (4.11)
J
= Y p;U;BU, (4.12)
J

where U; = UP; VT is a product of three unitary matrices, and thus is unitary.
This completes the proof that 1 — 2.

The proof that 2 — 3 is trivial, since every random unitary quantum
operation is also doubly stochastic.

To prove 3 — 1, suppose €& is a doubly stochastic quantum operation with
operation elements {E;}. We prove that £(B) < B. Let U be the unitary
matrix which diagonalizes £(B) and V' the unitary matrix which diagonalizes
B. Then F; = UE;V' defines a set of operation elements for a quantum
operation F. F is doubly stochastic, since >, FjTFj =V3, E]T-EjVT =1
(the trace-preserving condition) and 3= ; F; F’ j =U EjE]T U = I (the unitality
condition). It follows that

AE(B) = F(MB) =3 F;A(B)F}. (4.13)
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This equation may be rewritten in component form, where F}j; represents
the (k,1)th component of Fj,

’f_z ik (B ]lk—2| jkil A (B (4.14)

Define the components of a matrix D by Dy = 3, |F i ki|?, so the previous
equation may be rewritten

ME(B)) = DA(B). (4.15)

If we can show that D is doubly stochastic then it will follow that £(B) < B.
It is clear that the entries of D are non-negative, so all we need do is show
that the row and column sums of D are 1. This follows from the trace-
preserving and unitality properties of F. For example, the unitality condi-
tion, >2; F; F; = = I, can be written out in component form on the diagonal to
give

1= Z il =" Dy (4.16)
l

That is, the row sums of D are 1. Similarly the trace-preserving condition,
>, F ]-TF ; = I, can be written out in component form on the diagonal to give

1_2 TaF =" Dy (4.17)

That is, the column sums of D are 1, which completes the proof. ®

Exercise 4.1.5: Show that if £ is a trace-preserving quantum operation
that is not doubly stochastic, then there exists Hermitian A such that

E(A) £ A.

4.2 Which processes increase quantum entropy?

The von Neumann entropy is a measure of the disorder present in a quantum
state, p. It is defined by S(p) = —tr(plog(p)), where we take the logarithm
to base 2. An introduction to the properties of the von Neumann entropy
may be found in [43, 65, 44]. Suffice to say that the von Neumann entropy
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is a quantity of great importance in both quantum statistical mechanics
and quantum information science. We assume that the reader is already
reasonably familiar with the properties of the von Neumann entropy, and
motivated to consider the study of the von Neumann entropy an interesting
topic. If this is not true, then the reader may safely skip to Section 6.0.1.

Majorization and the von Neumann entropy are similar, in that both offer
approaches to the problem of quantifying what it means for one quantum
state to be more disordered than another. We alluded to connections between
majorization and entropy in Chapter 1, and will now work those connections
out in more detail.

Proposition 4.2.1: Suppose p and o are density matrices such
that p < 0. Then S(p) > o.

We will give two proofs of this proposition, one in the main text, and
the other in the exercises. The proof in the text relies on a well-known
but somewhat nontrivial fact, the concavity of the von Neumann entropy,
Sk Prpr) = X ppeS(pr). See any of [43, 65, 44] for a proof of this fact. A
more elementary proof may be found below in Exercises 4.2, 4.2, and 4.2.
Proof: Suppose p < 0. By Theorem 4.1.1 it follows that there exist prob-
abilities p; and unitaries U; such that p =3, ijjaU; . From the concavity
of the von Neumann entropy it follows that S(p) > 3=, ij(UjaU;). But

S(UjanT) = S(0), s0 S(p) > S(0), as required. ®

Exercise 4.2.1: The Shannon entropy of a probability distribution {p;} is
defined by H({p;}) = — >, p;log(p;), where the logarithm is taken to
base two. Show that the Shannon entropy is a concave function of the
probability distribution.

Exercise 4.2.2: Show that the Shannon entropy and von Neumann entropy
are related by the equation S(p) = H(A(p)).

Exercise 4.2.3: Suppose p < o. Show that there exist probabilities p;
and permutation matrices P; such that A(p) = >, p; PjA(0). Use the
results of the previous two exercises to provide an alternative proof of
Proposition 4.2.

An important physical question is to determine which trace-preserving
quantum operations only ever increase, or, more precisely, never decrease,
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the von Neumann entropy. A priori it is not obvious what the answer to this
question is, but with the tools now at our disposal it is easy to prove that it
is precisely the doubly stochastic quantum operations which never decrease
the entropy.

Theorem 4.2.2: Let £ be a trace-preserving quantum operation
acting on a d-dimensional state space. Then one of the following
two possibilities holds:

e & is doubly stochastic, in which case, S(E(p)) > S(p) for all
density matrices p.

e £ is not doubly stochastic, in which case, there exists a den-
sity matrix p such that S(E(p)) < S(p).

Proof: Suppose & is doubly stochastic. Then it follows from Theorem 4.1.1
that £(p) < p, and thus by Proposition 4.2, S(E(p)) > S(p).

Suppose £ is not doubly stochastic. Since £ is trace-preserving, by as-
sumption, it follows that £(I) # I, and thus £(1/d) # I/d, that is, £(I/d)
is not a maximally mixed state, and thus S(E(/d)) < S(I/d) = log(d). m

Problems for Lecture 4

Problem 4.2.1: The following result was used to study the problem of sim-
ulating one Hamiltonian by another set of Hamiltonians, in the context
of universality in quantum computation [42]. Let A and B be traceless
Hermitian matrices, and assume that B # 0. Prove that there exists a
positive constant ¢ such that A < ¢B, and thus there exist probabilities
p; and unitary matrices U; such that

A=¢ pU;BUL (4.18)
J

Hints for Lecture 4

Hint for Exercise 1.3: The basis |e;) to measure in is the Fourier trans-
form of the eigenbasis of p.
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Chapter 5

Decomposing density matrices
into pure states

Uhlmann’s theorem provides a fundamental connection between majorization
and quantum mechanics. In this chapter we apply Uhlmann’s theorem to the
problem of characterizing how a density matrix p can be decomposed into
ensembles of pure states, p = =, p;|¢;)(¢;|. The solution of this problem will
allow us to easily prove another important theorem connecting majorization
to quantum mechanics, known as Horn’s lemma. Horn’s lemma states that
r < s if and only if there exists a unitary matrix u such that r; = 37, |ujk|23k.
It arises widely in quantum mechanics, owing to the ubiquity of unitary
matrices in that theory.

Section 5.1 considers the characterization of ensemble decompositions for
a density matrix p, p = X; p;|v;)(¢;|. Section 5.2 applies these results to
prove Horn’s lemma, and provides some simple applications of Horn’s lemma
to quantum mechanics; the next chapter contains more complex — and in-
teresting — applications of both Horn’s lemma and Uhlmann’s theorem to a
problem of great fundamental interest in quantum mechanics: characterizing
the acquisition of information during a quantum measurement. Finally, in
Section 5.3 we revisit the problem of characterizing the ensemble decompo-
sition of a density matrix
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5.1 What probabilities can appear in an en-
semble for a density matrix?

The density matrix is an important tool used in quantum mechanics to deal
with situations where we have incomplete knowledge of a quantum state.
Recall that if a quantum system is in state |¢;) with probability p;, then the
density matrix describing that situation is defined to be

p= ij|¢j><¢j|- (5.1)

As discussed in detail in Appendix C, a given density matrix, p, may be given
many different decompositions into pure state ensembles,

p =il = q|or)(xl. (5.2)
7 "

The reader not thorougly comfortable with this fact should pause to review
the material in Appendix C before proceeding. As proved in the Appendix,
the following theorem characterizes, for a given density matrix, the different
decompositions into pure state ensembles possible for a given density matrix.

Theorem 5.1.1: ((Ensemble theorem))

Let p be arank-I density matrix, with p = -\_; X;(p)|7) (j|, where
A;(p) are the nonzero eigenvalues of p, and |j) is a corresponding
set of orthonormal eigenvectors. Then a set of probabilities p;
(j = 1,...,m) and corresponding normalized state vectors |1;)
generate p if and only if there exists an [ X m matrix u with
orthonormal rows, and such that

VPEIYR) = Z wir\/ A (p)]7)- (5.3)

A discussion of the history and proof of this theorem may be found in Ap-
pendix C.

Theorem 5.1.1 characterizes the possible ensemble decompositions of a
density matrix. It suggests an interesting related problem: for a given den-
sity matrix, p, for what class of probabilitiy distributions (r;) does there
exist a set of pure states |¢;) such that p = 37, p;|v;)(¥;]? We will refer to
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this problem as the ensemble probability problem. The solution to the en-
semble probability problem involves majorization, and has many interesting
implications for quantum mechanics.

The approach we take to the ensemble probability problem is based on
two results interesting in their own right, the Schmidt decomposition and
Schur’s lemma, which we now review. The Schmidt decomposition for a pure
state, |1), of a composite quantum system with components A and B, is a
decomposition of the form

9) = 3 Ml ali) s (5.4)

where \; > 0 are real coefficients, and |j)4 and |j)p are orthonormal bases
for system A and B, respectively. Such a Schmidt decomposition can be
shown to exist for any pure state of a two-component quantum system. The
proof is a simple application of a powerful result from linear algebra known
as the singular value decomposition; see, for example, [43, 45] for proofs of
the Schmidt decomposition.

A surprising consequence of the Schmidt decomposition is that the eigen-
values of the reduced density matrices ps = trg(|v){(¥]), pp = tra(|¥)(¥])
are closely related. From Equation 5.4 we see that

pa= > NINalilas p =D Nl|i)s(ils (5.5)
J J

so the nonzero eigenvalues are in fact equal. When system A and system
B have the same dimension, this implies that A\(pa) = A(pp). When the
dimensions of A and B are not equal, the non-zero components of these
vectors will be the same, but the dimensionality of the two vectors will be
different. However, even in this case we will write A(p4) = A(pp), where it is
understood that equality means that one should “pad” whichever vector is
of lower dimensionality with extra zero entries so that the two vectors have
the same dimensionality.

The other result we need for the solution of the ensemble probability
problem is Schur’s theorem, which relates the eigenvalues of a matrix to the
diagonal entries of that matrix:

Theorem 5.1.2: (Schur’s theorem)
Let A be a d by d Hermitian matrix. Let diag(A) denote the vec-
tor whose components are the diagonal entries of A with respect
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to some orthonormal basis |7). Then

diag(A) < A(A). (5.6)

Schur’s theorem is a special case of a more general result, anticipated in
Theorem 1.3.2 on page 7. We state a slight generalization of that result
here:

Theorem 5.1.3: Let A be a Hermitian matrix, and P; a complete
set of orthonormal projectors, that is, >; P; = I. Then A’ =
>.; PjAP; satisfies A" < A.

The theorem follows immediately from Uhlmann’s theorem and the observa-
tion that £(p) = X°; PjpP; is a doubly stochastic operation, that is, £ is both
trace-preserving and £(I) = I. To prove Schur’s theorem from theorem 5.1.3
we simply choose the projectors P; = |7) (j.

We are now in position to make our first significant progress on the ensem-
ble probability problem, proving a necessary condition for a density matrix p
to be decomposable as p = 3=, p;|;)(¢;|. For later purposes it will be conve-
nient to state the result in a slightly more general, though equivalent, form,
as a result about arbitrary positive matrices, not just density matrices:

Proposition 5.1.4: Suppose M is a positive matrix, r = (r;) is
a vector of real non-negative numbers, and |¢;) is a correspond-
ing set of normalized state vectors, such that M = 3=, r;|¢; ()4;].
Then r < A(M). Note that if the vector r is of a different dimen-
sion to A(M) then we “pad” whichever vector has the smaller
dimension with additional zeroes to enable comparison using the
majorization relation.

Proof: We will assume that M = p is a density matrix, and (r;) = (p;) is
a probability distribution. The general result follows easily from the obser-
vation that M /tr(M) is a density matrix for any non-zero positive matrix
M. We give the system in which p lives a name, system A. Furthermore, we
introduce an auxiliary quantum system, B. By definition, B’s state space
is spanned by a set of orthonormal vectors |j)p whose index set j runs over
the same set of values as the probabilities p; in the probability distribution.
The system B is a ficticious system, yet it plays a role in siimplifying the
proof of the proposition; you might think of the role of B as being like the
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role complex numbers play in providing simple proofs of some proofs in real
analysis. We define a pure state, |¢), of the system AB by

DESINIOINE (5.7

Let p4 and pp be the corresponding reduced density matrices. Direct calcu-
lation shows that rhos = p, while

pB = zk:\/pjpk\j)(k\ (Velt5), (5.8)

so diag(pp) = (p;). Thus, (p;) = diag(ps) < A(pp), where we have applied
Schur’s lemma. But, as discussed above in connection with the Schmidt
decomposition, A(pp) = A(pa), so we deduce that (p;) < A(pa) = A(p),
which completes the proof. m

Exercise 5.1.1: This exercise provides a more direct proof of Proposi-
tion 5.1, avoiding the use of Schur’s theorem or auxiliary systems. Use
the ensemble theorem, Theorem 5.1.1, to argue that py = 3=, [u;x|?A;(p)
for some [ X m matrix v with orthonormal rows, where [ is the rank
of p, and m is the number of elements in the probability distribution.
Then use Theorem 3.1.2 to aruge that (p;) < A(p).

It turns out that the necessary condition found in Proposition 5.1 is ac-
tually sufficient as well. Proving this turns out to be an easy consequence of
the rank-two case.

Proposition 5.1.5: Let r < s be two-dimensional vectors with
non-negative entries, and suppose |e1), |ez) are orthonormal vec-
tors. Then there exist normalized state vectors |¢1),|ds) such
that

1|10 d1] + r2fd2()do| = siler(Yer| + salea()eal. (5.9)

Proof: It will be convenient to assume that rq,7, # 0; we can assume this
without loss of generality, since the cases when one or both are zero are
trivial. Because r < s it follows from Theorem 3.1.2 that there exists t
satisfying 0 <t < 1 and such that

r = tSl + (1 — t)SQ; o = (1 — t)Sl + tS2. (510)
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We define § = arccos(v/t) and define states |¢;) and |¢,) by

Vitlén) = cos(8)y/Elen) + sin(6)y/53les), (5.11)
Vialés) = —sin(8)y/ailer) + cos(9)y/5zles). (5.12)

The fact that |¢;) is normalized follows by taking the inner product of Equa-
tion (5.11) with itself to give

r1(p1|é1) = cos?(0)s; + sin?(0)ss. (5.13)

By definition of § we have cos?(#) = t and sin®*(f) = 1 —t, so comparing with
Equation (5.10) we see that |¢;) is normalized. A similar proof shows that
|¢2) is normalized. Equation (5.9) can be verified either by direct calculation,
or by using Theorem 5.1.1. =

By combining Propositions 5.1 and 5.1, we can obtain a statement about
the rank-two case that is stronger than Proposition 5.1.

Proposition 5.1.6: Let r < s be two-dimensional vectors with
non-negative entries, and suppose |psiy),|psiz) are normalized
state vectors. Then there exist normalized state vectors |¢1), |¢2)
such that

T Q| + elthe (Vo] = s1]@1()P1] + salphiz()dal.  (5.14)

Proof:  Let M = s1|¢1()é1] + s2|phiz()¢a|. By Proposition 5.1 s < A\(M).
Since the majorization relation is transitive it follows also that r < A(M),
and the result follows from Proposition 5.1. &

We're in position to put all the elements together to solve the ensemble
probability problem.

Theorem 5.1.7: Let p be a density matrix, and p = (p;) a prob-
ability distribution. Then a set of normalized state vectors |1;)
such that p = 37, p;[v;) (1] exists if and only if p < A(p). As
earlier, if p and A(p) have different dimensions then we may pad
whichever vector is smaller with extra zeroes to enable compari-
son using the majorization relation.

Proof: ~ The necessity of the condition p < A(p) was already proved in
Proposition 5.1. To prove sufficiency, we use Theorem 3.1.2 to write p =
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T, ... T,\(p), where n is finite, and the T; are T-transforms. The result
now follows by combining this fact with repeated applications of Proposi-
tion 5.1. W

It is worth observing that the statement of Theorem 5.1.7 can actually
be strengthened slightly. If we look at the constructive part of the proof,
we see that the ensemble of states [¢;) can be formed by taking real linear
combinations of the eigenstates of p. This observation will be useful below
in our discussion of Horn’s lemma.

The history of Theorem 5.1.7 is interesting. The result was conjectured
by Uhlmann [56], who proved that p < A(p). The proof in the reverse direc-
tion was completed by Nielsen [41]; Ruskai had noted the same result prior
to the paper of Nielsen, but had not published. Many elements of the proof
are implicit in Hughston, Jozsa and Wootters [27], but they do not draw the
connection with majorization. In the context of the present proof, it is inter-
esting that the proofs of Nielsen and Ruskai (CHECK!) make use of Horn’s
lemma, which we have not used. The idea for the present line of development
was suggested to the author in a personal communication by Kitaev. What
is nice about this line of thought is that we can easily deduce Horn’s lemma
as a consequence of Theorem 5.1.7, reversing the order of earlier presenta-
tions. This offers a substantial advantage over earlier treatments of Horn’s
lemma, which tended to be somewhat complex and notationally difficult. By
contrast, the present development is simple and enlightening.

Exercise 5.1.2:

Exercise 5.1.3: Let p be any rank d density matrix, and suppose m > d.

Show that there exist pure states |11), ..., |¢y,) such that p is an equal
mixture of these states with probability 1/m,
|thw) (|
= —_ 5.15
p zk: - (5.15)
(From [41].)

5.2 Horn’s lemma

Theorem 5.2.1: ((Horn’s lemma))
Let » and s be d-dimensional real vectors. Suppose r < s.
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Then there exists a d x d real unitary matrix! u such that r; =

Sk |kl ?sk. Conversely, for any d x d unitary matrix, u, real or
not, r; = > |ujk|?sk implies r < s.

Note that Horn’s lemma immediately implies the weaker statement that
r < s if and only if r; = 3, |ujk|?s, for some unitary, u. Most often it is
this form of Horn’s lemma that is useful, and often when speaking of “Horn’s
lemma” it is this result to which we are referring.

There is a compact way of restating Horn’s lemma that is sometimes

useful. The Hadamard product Ao B of two m xn matrices A and B is defined
to be just the elementwise product: (Ao B);, = Aj;Bjr. Horn’s lemma may
thus be stated as r < s if and only if there exists orthogonal u such that
r = (U o U*)s. This has the substantial advantage of being notationally
simpler than the statement of Horn’s lemma above, and has the additional
advantage of making explicit the connection between Horn’s lemma and the
well-studied Hadamard product — see, for example, Chapter 5 of [22] for a
survey of the properties of the Hadamard product.
Proof: Suppose r < s. We suppose initially that both r and s have non-
negative entries summing to one. That is, r and s can be thought of as
probability distributions. This restriction will be lifted below. Let o be a
density matrix in d dimensions, chosen so that A(0) = s. Then by Theo-
rem 5.1.7, we can find a set of states [1;) such that o = 37, 7;[¢;)(¢;|. By
Theorem 5.1.1 and the comments made after the proof of Theorem 5.1.7, we
can write

Vi) = Zk:ujk\/ilk% (5.16)

where w is a real unitary matrix, and |k) are an orthonormal set of eigenstates
for 0. Taking the inner product of Equation (5.16) with itself, we have
r; = Sk [ujk|*sk, as required.

To prove the converse, just note that the matrix D with entries defined
by Djr = |u;i|?* is doubly stochastic, since the rows and columns of u must
all be normalized. By Theorem 3.1.2 it follows that » < s. B

A doubly stochastic matrix D whose entries can be written Dj; = |ux|?
for unitary w is called unistochastic. D is said to be orthostochastic if, in
addition, U is real. Horn’s lemma shows that r < s if and only if r = Ds for
orthostochastic (or unistochastic) D.

'Such matrices are usually referred to as orthogonal matrices.
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It is not difficult to show that all 2 x 2 doubly stochastic matrices are also
unistochastic, but in higher dimensions this is not true. To see this, suppose
we have a unistochastic matrix D, D, = |u;|*. Writing out in component
form the condition that the first two columns of u are orthonormal to one
another we obtain 3-; uj uj2 = 0, and thus

UTlulg = — Z U;luj'g. (517)
j#1

Taking the absolute value of both sides and using the triangle inequality we

obtain
Vdidiz <> \/Dj1Djs. (5.18)

i#1
This condition is violated for the 3 x 3 doubly stochastic matrix

07 03 0
D=1]03 02 05|, (5.19)
0 05 05

and thus D cannot be unistochastic.

Exercise 5.2.1: Show that all 2 by 2 doubly stochastic matrices are unitary-
stochastic.

5.3 Decomposing the density matrix revis-
ited
This section will be filled in later.

Problems for Lecture 5

Problem 5.3.1: ((From [41].)) Suppose [¢) is a pure state of a compos-
ite system AB with Schmidt decomposition

[0) =2 vpilialin). (5.20)

41



Prove that given a probability distribution ¢; there exists an orthonor-
mal basis |j/) for system A and corresponding normalized states |1);)
of system B such that

[0) = 2Vl (5.21)

J

if and only if (¢;) < (ps)-

Hints for Lecture 5

Hint for Exercise 5.1 Set |[¢) = Z?Zl w'*|j), where |k) are orthonormal
eigenstates for p, and w = exp(27wi/m).
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Chapter 6

Information acquisition during
quantum measurements

In this chapter we apply the theory of majorization to the analysis of the
quantum measurement process. Majorization turns out to be remarkably
well suited to the analysis of quantum measurements, and we will prove
results capturing the intuition that quantum measurements acquire informa-
tion about the state being measured. Later, in Chapter 7?7, we will use these
results to analyse the process of transforming one entangled state to another.

The results of the chapter are framed in terms of the so-called generalized
measurement formalism. Generalized measurements extend the standard
von Neumann formalism for quantum measurement taught in most under-
graduate quantum mechanics class. They do this by imagining a situation
in which one quantum system (the “system being measured”) is allowed to
unitarily interact with another quantum system (the “measuring device”),
and the result of the measurement is then read out by applying a von Neu-
mann measurement to the measuring device. The generalized measurement
formalism achieves its simplicity and utitility by describing the effect of this
operation on the system being measured alone, not the effect on the com-
bined systems. Thus, the generalized measurement formalism provides an
extremely general approach to quantum measurement, describing with ease
many situations that are awkward (though not impossible) to describe using
the better-known von Neumann approach. This ease of use has resulted in
the generalized measurement formalism becoming quite widely used in quan-
tum information theory. A review of the generalized measurement formalism
may be found in Appendix B.

43



The chapter is structured as follows.

Section ?? contains proofs of the static constraints (6.7) and (6.8) on
the mixing of quantum states, and the dynamic constraints (6.9) and (6.10)
on quantum measurement, and explores some elementary consequences of
these results. In Section 6.3 we prove the partial converses to (6.7)-(6.8)
and (6.9)-(6.10). Section 10.1 explains how the results of the present paper
may be used to obtain simplified proofs of known results about entanglement
transformation. Finally, Section 6.4 concludes the paper with a discussion of
some open problems and future directions.

6.0.1 Quantum measurement without post-selection

As an application, let f(-) be any Schur-convex function. There is a natural
function on Hermitian matrices induced by f, namely f(A) = f(Aa), where A
is a Hermitian matrix, and A4 is its vector of eigenvalues. Clearly f(€(A)) <
f(A) for all Hermitian A if and only if € is a doubly stochastic quantum
operation. Thus, for example tr(£(p)?) < tr(p?) for all density matrices p,
and S(E(p)) = S(p).

Schur’s theorem has a beautiful corollary, the Hadamard determinant
theorem:

Theorem 6.0.1: (Hadamard determinant theorem)
Suppose A is a d by d positive matrix. Then

det(A) < ﬁAii. (6.1)

Proof:
We know that diag(A) < Aa. By the Schur-concavity of the product
function f(z) = [, z; we have

d
H AMA); < H Aji (6.2)
which gives

det(A) < f[Aii. (6.3)



|
Schur’s theorem is equivalent to another extremely useful result, Ky Fan’s
mazimum principle:

Theorem 6.0.2: (Ky Fan’s maximum principle)
Let A be any d by d Hermitian matrix. Then for any & in the
range 1 through d,

zk: /\(A)jl = max tr(AP), (6.4)

where the maximum is over all k£ dimensional projectors P.

Proof: Let P be a projector onto a subspace with orthonormal basis |1), [2), ..., |k).
Writing A with respect to this basis, Schur’s theorem implies that

tr(PA) = i Ay < zkj AH(A). (6.5)

Exercise 6.0.1: Use Ky Fan’s maximum principle to prove Schur’s theo-
rem.

Theorem 6.0.3: (Minkowski determinant theorem)
If A and B are d by d positive matrices then

(det(A 4+ B))Y4 < (det A)Y? + (det B)Y. (6.6)

6.1 Constraints on the mixing of quantum
states

Suppose we mix a set of quantum states p; according to the probability
distribution p;. Then we will show that this mixing process must satisfy the
constraint equations:

A(;sz‘) =< zi:pi)\(f)z‘) (6.7)
Einik(pi) = A(Xi:pim-)- (6.8)
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A formal definition of majorization appears in Subsection ??7, however for
now the essential intuition to grasp is that the relation x < y means that
the vector « is more “mixed” (or “disordered”) than y. Thus, Equation (6.7)
captures the intuition that >, p;p; is more mixed, on average, than the states
pi appearing in the ensemble. The intuition behind (6.8) is a little more
complex. Imagine that we prepare the state p by randomly choosing a value
for ¢ according to the probability distribution p;, and then preparing the
corresponding state p;. Our quantum state, including a description of 7, may
be written as Y, p;|i) (i|®p;. We then “throw away” the state |i) representing
our random choice of i, leaving only the state Y, p;p;. The relation (6.8)
expresses the fact that when we throw away ¢, the state of the quantum
system becomes less disordered.

Suppose we perform a measurement on a quantum mechanical system
initially in the state p, obtaining measurement result ¢ with probability p;,
and corresponding posterior state p;. What constraints are placed on the
relationship between p, p; and p;? We will show that the following two
dynamic constraints must be satisifed:

Mp) =< 2 pid(ph) (6.9)

Drir () < Ap). (6.10)

The intuition behind (6.9) is that quantum measurements acquire informa-
tion about the state of the system being measured, and thus after measure-
ment the state of the system is less mixed, on average, than before. The
intuition behind (6.10) is a little more complex, but can be understood us-
ing Zurek’s approach[71] to decoherence and quantum measurement. Recall
that in this approach a measurement involves three systems: the system
being measured, which starts in the state p, and ends in the state p}; a mea-
suring device, which starts in some standard state, and finishes in a “pointer
state” |i) recording the result of the measurement, and an environment which
“decoheres” the measuring device, ensuring that it behaves in an essentially
classical fashion. The system and measuring device interact unitarily during
the measurement, ensuring that there is no change in the amount of disorder
present in the system. The subsequent environmental decoherence process
can also be thought of as a type of measurement, in which the different out-
comes are averaged over. In this view, the environment continually measures
the state of the measuring apparatus, resulting in a final state -, p;|7) (i| ® p!
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for the measuring apparatus and system being measured. This decoherence
process causes an increase in the disorder present in the system, which is
the intuition behind (6.10). More succinctly, (6.10) may be thought of as
capturing the notion that the total ensemble of possible quantum states is
more disordered after a measurement than it is before.

The importance of the static constraints (6.7)-(6.8) and the dynamics
constraints (6.9)-(6.10) is further reinforced by the fact that in each case
there is a type of converse to these equations. In this introduction we fo-
cus only on the more interesting case of the converse to the dynamic con-
straints (6.9) and (6.10), however rather similar remarks hold also for the
static constraints (6.7) and (6.8). Suppose p; is a probability distribution,
and p and p} are quantum states such that

Mp) =< P (). (6.11)

Then we will show that there exists a quantum measurement whose measure-
ment outcomes may be labelled by a pair of indices (7, j), such that for any
fixed ¢ and for all j the posterior state of the quantum system after measure-
ment is p}, and the probabilities p;; for the (7, j)th measurement outcome
satisfy >°; pi;; = p;. Unfortunately, this result is not a tight converse to equa-
tions (6.9) and (6.10), due to the introduction of the extra index j, however
for many purposes it is a sufficiently strong converse. We will show that
even the equations (6.9) and (6.10) together do not completely characterize
the quantum measurement process, however I believe it likely that there is a
simple characterization of the measurement process along similar lines that
may be expressed entirely in terms of the eigenvalues of the prior and poste-
rior states, and the probabilities of the different measurement outcomes. Of
course, it is true that the quantum measurement formalism already provides
such a characterization, in the form of a matrix equation, however equations
such as (6.9) and (6.10) provide far more explicit information, and as such,
are likely to be more useful in practice. We will demonstrate the utility
of this approach by application to the problem of entanglement transfor-
mation, simplifying the proofs of several known results about entanglement
transformation[40, 61, 62, 31, 19].

There is a striking level of symmetry in the equations (6.7)-(6.8), (6.9)-
(6.10), which we will also see in the partial converse results. It is obviously
tempting to suggest that this reflects some deeper underlying principle, much
as Maxwell’s equations may be derived from a deeper action principle based
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on the Faraday tensor, or the still deeper principles of gauge invariance and
relativity. Unfortunately, I have not yet succeeding in obtaining a satisfactory
form for such a deeper principle. Presumably, such a deeper principle might
assist in tightening the partial converse results, or perhaps tightening the
partial converses may shed light on the origin of Equations (6.7)-(6.8), (6.9)-
(6.10).

In explaining the intuitive meanings of the equations (6.7)-(6.8) and (6.9)-
(6.10) we have used language such as the “disorder” present in a quantum
state. One might wonder if it is possible to write down entropic statements
capturing these intuitions. We will show that each of these equations in fact
implies an entropic statement whose content corresponds to the intuition
we have described. Of course, entropic statements should really only be
interpreted in the aymptotic limit where we have a large number of identical
copies of a system available; the advantage of Equations (6.7)-(6.8) and (6.9)-
(6.10) is that they are stronger forms of these asymptotic statements which
may be applied to single quantum systems.

This paper contains six fundamental results (together with a number of
applications), expressed in the four constraint equations, (6.7)-(6.8), (6.9)-
(6.10), and the partial converses to (6.7)-(6.8) and (6.9)-(6.10). We now
review antecedents of these results in the existing literature. Equation (6.7)
is an elementary consequence of classic results in the theory of majorization.
Equation (6.8) follows as a corollary of work of Uhlmann[56], Ruskai (un-
published, 1993) and Nielsen[41] on the relationship between mixed states
and probability distributions. Equations (6.9) and (6.10) are implicit in the
work of Vidal[62] on entanglement transformation, and the partial converse
to (6.9)-(6.10) is implicit in the work of Jonathan and Plenio[31] on entan-
glement transformation, building on earlier work by Nielsen[40]. A proof of
Equation (6.9) in the context of entanglement transformation has also been
previously obtained by Jonathan, Nielsen, Schumacher and Vidal (unpub-
lished, 1999). There are several advantages to the point of view taken in
the present paper. First, measurement is in some sense a more fundamental
process than entanglement transformation, and Equations (6.9) and (6.10)
highlight the fundamental connection between measurement and majoriza-
tion for the first time, incidentally explaining why there is a connection be-
tween entanglement transformation and majorization: it arises as a result
of a deeper connection between measurement and majorization. Second, the
proofs in the present paper are novel, and have the advantage of proceed-
ing from a more unified point of view than earlier work. As a result they
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are, perhaps, more elegant and informative than earlier proofs, especially
the proof of the partial converse to (6.9)-(6.10), which is a substantial im-
provement of and extension to existing constructions. Several other items of
related work are also worth pointing out. There is a substantial mathemati-
cal literature on the problem of characterizing the properties of sums A + B
of Hermitian matrices A and B, and Fulton[17] has written a nice review
of recent progress on this problem, which is closely related to the problem
of mixing of density matrices. Hardy[19] has introduced techniques in the
context of entanglement transformation that can be used to prove (6.9) and
the partial converse to (6.9)-(6.10). Fuchs and Jacobs (unpublished, 2000)
have obtained a beautiful and quite different proof of (6.9), after hearing
of the result from Nielsen. Finally, the procedure described in this paper to
prove the partial converse to (6.9)-(6.10) is a generalization of the procedures
for entanglement transformation for pure states found by Nielsen in [40], and
subsequently improved in independent work by Hardy, Jonathan and Nielsen
(described in Chapter 12 of [43]), by Jensen and Schack[29], and by Werner
(unpublished, 2000).

6.2 Constraints on the mixing of quantum
states

Theorem 6.2.1: Suppose p = 3, pjp; is a convex combination of
quantum states p; with probabilities p;. Then

Ap) = 2pid(p) (6.12)

Drir (o) < Alp). (6.13)

In the statement of the theorem, the notation ¢ denotes a direct sum of
vectors. Note that the vectors on the left- and right-hand sides of (6.13) may
therefore be of different dimension. In such cases we extend whichever vector
is of lesser dimension by padding it with zero entries, to enable comparison
using the majorization relation. As an example of this convention, suppose
po= 1/3,ps = 2/3,p1 = diag(3/4,1/4) and py = diag(1/5,4/5). Then
Equation (6.13) becomes

[{Je[{] Gl 1 3lhg) e
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which is equivalent to

37
3
@ (6.15)
0

S o oo [ 1=
A

Proof: Equation (6.12) is an immediate consequence of the fact that A(A +
B) < A(A) + \(B) for any two Hermitian matrices A and B, as proved in
Subsection ?77?.

Proof of (6.13): As noted in Subsection ?7?, if a density matrix p can be
written as a convex combination of pure states |¢;), p = 3, pi|wi) (¢4], then it
follows that (p;) < A(p), where (p;) denotes the vector whose entries are the
probabilities p;. Equation (6.13) is a corollary of this result. To see this, note
that if r;; are the eigenvalues of p; and |i, j) the corresponding orthonormal
eigenvectors then (6.13) is equivalent to the equation

(piriz) < Alp), (6.16)

which follows from the results of Subsection 7?7 and the observation that

P:Zpipz' = piryli, 4) @, 5l (6.17)

ij

This completes the proof of the theorem. H

6.2.1 Dynamical constraints on quantum measurement

Theorem 2: Suppose {E;} is a set of measurement matrices satisfying the
completeness relation >, E'ZT E; = I. Then the quantum measurement de-
scribed by these matrices must satisfy the following four constraints:

A(ZEZ-pEZ> < Z)\(Ei,oEZT) (6.18)
@A(EpET) < A(ZEZ-/)EZT> (6.19)

AMp) < YA (EpE]) (6.20)

B (EpEl) < Ap). (6.21)
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A slightly different way of stating Theorem 2 is to define p; to be the
probability of obtaining outcome ¢ when the measurement defined by the
matrices {E;} is performed on the system, and let p) = EipE] /tr(E;pE!)
be the corresponding posterior states. Then the following four equations are
equivalent to (6.18)-(6.21):

ASeal) < Soaw 6.22)
@M(pé) = A(Zwé) (6.23)

)

Ap) = d_pir (o) (6.24)

Drir () < Ap). (6.25)

Theorem 2 is a fundamental constraint on the dynamics that may occur
during a quantum measurement. Equations (6.22) and (6.23) are, of course,
merely the dynamical expression of the static constraints found earlier in
Theorem 1. Equations (6.24) and (6.25) represent novel constraints of an
essentially dynamical nature, connecting as they do the prior and posterior
states of the quantum measurement. Intuitively, Equation (6.24) captures
the notion that a quantum measurement “gains information” (on average)
about a quantum state, since it says that the eigenvalues of the initial state p
are, on average, more disordered than the eigenvalues of the posterior states
pi. Intuitively, the second dynamic constraint, (6.25) captures the notion
that the total ensemble of possible quantum states is more disordered after
the measurement than before. Thus, (6.24) and (6.25) represent complemen-
tary constraints on the evolution of a quantum system during a quantum
measurement process.

The constraints (6.22)-(6.25) are applicable even for very complex mea-
surement processes. For example, a single mode cavity undergoing direct
photodetection by an ideal photodetector can be described by a special case
of the generalized measurements formalism known as the quantum trajecto-
ries or stochastic Schrodinger equation picture (see [48, 69] for a review and
references). In this picture, if the system is started in the state p then the
final state of the system is p,, where “h” is used here to denote not just
a single measurement outcome, but rather the complete history recorded
by the photodetector, that is, all the times at which photocounts occurred.
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Then (6.24) and (6.25) may be written as

o) = [ du)A(pr) (6.26)

B du(h)Apn) < AMp), (6.27)

where the integral is a functional integral over all possible photodetection
histories, and du(h) is the corresponding measure on histories.

Proof of Theorem 2: The first two equations of Theorem 2, (6.18)
and (6.19), are immediate consequences of the deeper static constraints on
quantum mechanics introduced in Theorem 1; here we are merely enumerat-
ing the implications these static constraints have for dynamics. The remain-
ing constraints, (6.20) and (6.21), are genuine quantum dynamical constraints
relating the prior and posterior states of a quantum measurement.

Proof of (6.20): Suppose p is a positive matrix which can be written in
the block form:

p= l)?T )B(] (6.28)

For our purposes p will most often be a density matrix (and thus satisfy
tr(p) = 1), but the results we prove hold for a general positive matrix. We
will show that A(p) < A(A) + A(B). (Recall our conventions on padding,
which imply that the vectors of eigenvalues for A and B are to be extended
by zeroes in such a way that they contain as many entries as the vector
of eigenvalues of p). p is a positive matrix, so there must exist a matrix
D = [Dy|Ds] such that p = DD, where the matrices D; and D, have the
same number of columns as A and B, respectively, and both have the same
number of rows as p. Thus we have

A X DiD, DiD
=Dip=| 717t 1 2], 6.29
lXT B] ngDl DID, (6.29)

from which we read off A = DIDl and B = D;Dg. Using the results of
Subsection 7?7 and the fact that the eigenvalues of a product E'F' of matrices
E and F are the same as the eigenvalues of F'/E, up to padding by zeroes,
we see that

Mp) = MND'D) (6.30)
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(DD (6.31)
— MDD} + D,D}) (6.32)
< A(DyD}) 4+ X(D,DY}) (6.33)
= MDIDy) + A\(DiD,) (6.34)
= A4) +A(B), (6.35)

and thus A\(p) < A(A) + A(B), as claimed. This method for eliminating off-
diagonal block terms was introduced by Wielandt to connect the Weyl and
Aronszajn inequalities (cited as [67] in Chapter 3 of [8].)

As a straightforward consequence we see by induction that for any positive
matrix p and complete set of orthogonal projectors { P, }:

Mp) < 2oA(PipPy) (6.36)

Extending even further, suppose {E;} is any set of measurement matrices
defining a generalized measurement, and p is a positive matrix. As in Sub-
section 7?7 we can introduce an ancilla system with an orthonormal basis |i)
in one-to-one correspondence with the indices on the measurement matrices
E; and define a unitary matrix U which has the action

Uly)|0) = ZE )i (6.37)

where |0) is some standard state of the ancilla. Then we have A(p) = A(p ®
|0)(0|), since the non-zero eigenvalues of p and p®|0)(0| are the same. Simple
algebra and (6.36) imply that

Ap) = MU(p®|0)(0)UT) (6.38)
< MU DU @ 0)0DUI (I ® i) l)  (6.39)
= Y AEipE] @ i){il) (6.40)
= Y AEipE]), (6.41)

where in the last line we used A(E;pE!®|i)(i|) = AN(E;pE]), since the non-zero
entries agree. This completes the proof of (6.20).

Proof of (6.21): Again, let U be the unitary matrix constructed in
Subsection 77 to implement the measurement described by the measurement
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matrices {F;}, namely, any unitary matrix having the action
U 0) = Bl (6.42)

Again, we have \(p) = A(p ®|0)(0]), since the non-zero eigenvalues of p are
the same as those of p ® |0)(0|, and thus A(p) = A (U(p® |O><0|)UT). It
follows from Equation (B.9) that

A (Z(I @ i) (iU (p @ [0){0NUT(I & \i><’i\)> < Alp); (6.43)

)

and thus
A (Z EypE! @ \z’)(i\) < Ap). (6.44)

This last equation is obviously equivalent to the statement we set out to
prove,

DX (EpEL) < Mp), (6.45)

which concludes the proof of Theorem 2. [ |

6.2.2 Consequences of the constraint equations

The constraints proved in Theorems 1 and 2 are very strong and, not surpris-
ingly, have many interesting consequences. We now elucidate a few of these
consequences using the notions of Schur-concavity and Schur-converity. A
Schur-convex function f(-) is a real-valued function which preserves the ma-
jorization relation, in the sense that if x < y then f(x) < f(y). Simple neces-
sary and sufficient conditions for a function to be Schur-convex are known [8],
and many interesting functions are Schur-convex. These include, for example,
the function x — f(x) = Z;l:l %, for any k > 1. Similarly, a Schur-concave
function f(-) is one such that if < y then f(x) > f(y). Equivalently, f(-)
is Schur-concave if —f(+) is Schur-convex. Perhaps the canonical example of
a Schur-concave function is the Shannon entropy H(x) = — 3, z;log,(x;),
so that whenever x < y it follows that H(z) > H(y), giving further justi-
fication to the intuitive notion that x < y means that x is more disordered

o4



than y. Applying the Schur-concavity of Shannon’s entropy to the results of
Theorems 1 and 2 we obtain an attractive suite of results. First, applying
the Schur-concavity of H(-) to (6.12) gives

Slp) > H(Zi:pz-k(pi)) (6.46)

Applying the concavity of the Shannon entropy to the right hand side, we
obtain as a corollary the concavity of the von Neumann entropy,

S(p) = > _piS(p). (6.47)

Applying the Schur-concavity of H(+) to (6.13) and doing some simple algebra
gives

>_piS(p:) + H(pi) = S(p). (6.48)

This result was obtained previously by Lanford and Robinson[34] using dif-
ferent techniques. Applying the Schur-concavity of H(-) to (6.24), followed
by the concavity of the Shannon entropy, gives

S(p) =2 >_piS(p)). (6.49)

Essentially the same result has been obtained previously in the context of en-
tanglement transformation [6], where it expresses the fact that local processes
cannot increase the amount of entanglement present in a system. Finally, ap-
plying the Schur-concavity of H(-) to (6.25) gives the beautiful inequality

H(pi) + >_piS(p) = S(p), (6.50)

which implies that in order to lower the entropy of a system by an amount
A, on average, the information H(p;) collected by the measurement must
be at least as large as A. This fact can be seen as a quantum mechanical
expression of the principle, expressed by Landauer[33] and fleshed out by
Bennett[4] and Zurek[70], that measurement of a physical system carries
with it a thermodynamic cost when the measurement record is erased, and
proper accounting of this cost enables one to solve the conundrum posed by
Maxwell’s demon. (See [5] for a review.)
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Applying the Schur-convexity of the functions f(z) = 3, z¥ for k > 1 to
the results of Theorems 1 and 2 also give a number of interesting constraints.
The arguments used are analogous to those given above for the Shannon
entropy, so the details will be omitted, and we merely state the results:

Zpktr( F) <u (o) < Ypitr (o) (6.51)
Zp’“tr( ) <t (pf) < S ((0)F). (6.52)

6.3 Partial converses to the constraints on
mixing and measurement

Given the constraints on mixing and measurement described in Theorems 1
and 2 it is natural to ask if these constraints completely characterize the
processes of mixing and measurement, respectively. We will show below that
the answer to this question is no. However, partial progress towards achieving
simple characterizations of mixing and measurement may be reported in the
form of a partial converse to Theorem 1, described below in Subsection 6.3.1,
and a partial converse to Theorem 2, described in Subsection 6.3.2.

6.3.1 Partial converse to the constraints on mixing

Given the constraints Theorem 1 imposes on mixing it is natural to ask
whether these constraints completely characterize the mixing process. That
is, given a density matrix p, probabilities p; and vectors A\; with non-negative,
non-increasing components which sum to one, and such that

< Y pih (6.53)

@pi)\i =< Ap), (6.54)

does it follow that there exist density matrices p; such that \(p;) = \; and
p=ipipi’

We will show below that the answer to this question is no, however I
suspect that some characterization along similar lines is possible. Progress
towards such a characterization can be reported in the form of a partial
converse to Theorem 1, which states that provided (6.53) holds then there

o6



exist states p;; and a probability distribution p;; such that A(p;;) = A;, in-
dependent of the value of the index j, and p; = >2; py; for each i, as well
as p = >, Pijpyj- That is, in order to obtain a converse to (6.53) we need
to introduce an extra index, j. We will show below that it is necessary to
introduce the extra index if only (6.53) is assumed as a hypothesis for the
converse. Let’s state and prove the partial converse as Theorem 3.

Theorem 3: Suppose p is a density matrix and \; are vectors with
non-negative, non-increasing components summing to one. Suppose p; are
probabilities such that

Ap) < D_pidi. (6.55)

Then there exist density matrices p;; and a probability distribution p;; such
that p; = 30, pij, Mpij) = Ni, and p = 345 pijpij-

To prove Theorem 3 we need the result stated in Subsection 77 that
x <y if and only if there exist probabilities g; and permutation matrices P;
such that x = 3=, ¢; Pjy. Applying this result with the assumption (6.55) we
obtain

Ap) = d_pig; Piki. (6.56)

ij
Working in the basis in which p is diagonal, and defining A; to be the diagonal
matrix with diagonal entries \;, we may set p;; = p;q; and p;; = PinPjT,
obtaining p; = >3; pi; and A(ps;) = A;. Finally, the equation p = 32,; pijpi;
follows immediately from these definition and (6.56), completing the proof.

What of a tight converse to Theorem 17 It is easy to see that it is not
possible to obtain a tight converse to (6.53) alone, as follows. Suppose we
choose p = 1/2 to be the completely mixed state of a single qubit, and define
a probability distribution on just one outcome, the trivial distribution p; = 1,
with corresponding vector A\; = (1,0). Clearly, A(p) < >; piAi, yet it is not
possible to find a state p; such that p = pip; and A(p;) = A;. Thus, in
this example, it is necessary to introduce extra indices, just as was done in
Theorem 3.

Might it be that conditions (6.53) and (6.54) together completely char-
acterize the mixing process? The following example, due to Julia Kempe,
shows that this is not the case. Suppose we consider a qubit system, and
choose p = diag(5/12,7/12), py = po = 1/2, and A\; = (1,0), Ay = (1/2,1/2).
It is easy to verify that conditions (6.53) and (6.54) are satisfied with these
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choices. Unfortunately, it is not possible to find states p; and ps with vectors
of eigenvalues A\; and A\ such that p = pyp1+p2pe, since with these choices for
A1 and Aq it follows that p; must be a pure state and ps = I/2 the completely
mixed state, so pyp; + pap2 has eigenvalues 3/4 and 1/4, which are not equal
to 5/12 and 7/12. Despite this example, I believe it likely that conditions
along the lines of (6.53) and (6.54) may be used to completely characterize
the process of mixing in quantum mechanics.

6.3.2 Partial converse to the constraints on measure-
ment

Given the constraints Theorem 2 imposes on the quantum measurement pro-
cess it is natural to ask whether these constraints completely characterize
the possible posterior states and probabilities which may occur in such a
measurement? That is, supposing p is a density matrix, p; is a probability
distribution, and p} are density matrices such that

Ap) < Lo ) (6:57)

Drir () < o), (6.58)

does it follow that there exist measurement matrices {F;} satisfying the
completeness relation >, E';r E; = I and giving the states p, as posterior
states, with probabilities p;, when the measurement is performed on a system
initially prepared in the state p?

We will show below that the answer to this question is no, however I
suspect that some characterization along similar lines is possible. Progress
towards such a characterization can be reported in the form of a partial
converse to Theorem 2, which states that provided the relation (6.57) holds,
then there is a quantum measurement described by measurement matrices
{Ei;} such that the corresponding posterior states p; satisfy p;; = p; for
every j, and the measurement probabilities p;; satisty >, p;; = p;. Thus, in
order to obtain a converse to (6.57) we need to introduce an extra index, j,
just as we did earlier in the partial converse to Theorem 1. Also analogously
to that case, we show below that it is necessary to introduce the extra index
with only (6.57) as hypothesis for the converse. Let’s state and prove the
partial converse as Theorem 4.
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Theorem 4: Suppose p is a density matrix with vector of eigenvalues A\,
and o; are density matrices with vectors of eigenvalues )\;. Suppose p; are
probabilities such that

A=< piNi (6.59)

Then there exist matrices {E£;;} and a probability distribution p;; such that

SN ELE; = I (6.60)
]
J

To prove Theorem 4, we again use the result that x < y if and only if there
exist probabilities ¢; and permutation matrices P; such that x = 37, ¢; Py.
By assumption we have A < Y. p;\; and thus there exist permutation matri-
ces P; and probabilities g; such that

ij

Without losss of generality we may assume that p and o; are all diagonal
in the same basis, with non-increasing diagonal entries, since if this is not
the case then it is an easy matter to prepend or append unitary matrices to
the measurement matrices to obtain the correct transformation. With this
convention, we define matrices £;; by

In order for Fj;; to be well-defined by this formula alone it is necessary that
p be invertible. If this is not the case then the FE;; are defined on the support
of p by the formula (6.64), and to act as the zero operator on the orthocom-
plement of the support of p. It is convenient to let P be the projector onto
the support of p. Note that we have

VP (Z Ez‘TjEij) vp o= ZPinPjUinT- (6.65)
] ij
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Comparing with (6.63) we see that the right-hand side of the last equation
is just p and thus

N (Z EL-EU) Vi=p. (6.66)

from which we deduce that >, EiTjEZ-j = P, the projector onto the support
of p. Letting Q = I — P be the projector onto the orthocomplement of
the support, we can append an additional measurement matrix Fyy = @ to
the collection Ej; to ensure that the completeness relation >, E;;-Eij =1is
satisifed. Furthermore, from the definition (6.64) it follows that

EipEl; = pgjoi, (6.67)

and thus upon performing a measurement defined by the measurement matri-
ces {Ey;} the result (i, j) occurs with probability pi; = pig;, >°; pij = pi, and
the post-measurement state is ¢;. This completes the proof of Theorem 4.

Theorem 4 is not a sharp converse to the condition of Equation (6.57)
because of the extra index j. Introducing some such index is certainly neces-
sary with the present hypotheses, as may be seen by considering an example
with A = (1/2,1/2), and the trivial probability distribution on one outcome,
p1 = 1, with Ay = (1,0). Then A < p;A;, but it is clear that there does not
exist an By such that FypE] = p1, where A(p) = X\, A(p1) = A and Ej B, = I,
because the last equation implies that £; must be unitary. It is not difficult
to construct more complex examples to convince oneself that this behaviour
is generic.

Might it be that the conditions (6.57) and (6.58) together characterize
the posterior states and probabilities achievable through a quantum measure-
ment? The following argument, due to Julia Kempe and the author, shows
that this is not the case. Suppose we consider a qubit system, and choose
p = diag(5/12,7/12), p1 = p2 = 1/2, and p| = diag(1,0), p}, = diag(1/2,1/2).
It is easy to verify that conditions (6.57) and (6.58) are satisfied with these
choices. Unfortunately, it is not possible to find measurement matrices F;
and FEy satisfying >, EZT E; = I and giving posterior states p| and pf, with
equal probabilites 1/2, when the state p is measured. This can be seen in a
variety of ways. A simple direct way is to note that the purity of p] implies
that £7 must have the form E; = ala)(b| for normalized states |a) and |b),
and some « > 0. Thus

EiE, = I—-E|E (6.68)
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= I —a?b){b| (6.69)
(1= a®)[b)(b] + [c) {cl, (6.70)

where |¢) is orthonormal to |b). The polar decomposition gives Ey = Uy/ B3 E,
for some unitary U, so

Ey = V1 —a2U|b)(b| + Ulc){c|. (6.71)

We are requring that Engg = I /4, so it must be the case that Fs is non-
singular, and thus o < 1. Premultiplying by E;' and postmultiplying by
(ED)~! gives

1

p= T+ Jleel. (6.72)

Since |b) and |c) are orthonormal it follows that such a p cannot be equal to
diag(5/12,7/12), which is the desired contradiction. Despite this example, I
believe it likely that conditions along the lines of (6.57) and (6.58) may be
used to characterize the process of measurement in quantum mechanics.

6.4 Conclusion

We have shown that there are strong fundamental constraints on the pro-
cesses of mixing and measurement in quantum mechanics that may be natu-
rally expressed in the language of majorization. Although the results in the
present paper don’t completely characterize these processes, they suggest
that there may exist a simple set of conditions which substantially simplify
the usual characterization of these processes via operator equations. Another
interesting direction for further research is to generalize the constraints on
measurements obtained in this paper to better understand how two or more
states may transform simultaneously under a measurement. Once again, al-
though this problem is in principle already “solved”, in the sense that there
is an operator equation specifying exactly what transformations may occur,
results such as those in the present paper and in [13] indicate that much
more explicit characterizations may be possible. Such explicit conditions are
likely to have applications to fundamental problems such as the problem of
transformation of mixed state entanglement[6], and to the problem of deter-
mining to what extent the acquisition of information about the identity of a
quantum state disturbs the system being measured[16].
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Advanced theory of
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Chapter 7

Submajorization

In the usual definition of majorization, we say that r < s if Z?Zl le < Z?Zl sjl
for all k, with equality when k = d, the dimension of the space in which r
and s live. We have seen that this definition arises naturally in a number of
contexts, yet there are other contexts in which it helps to make use of the
related concept of submajorization. We say that r is submajorized by s, and

write r <, s, if

iﬁS§# (7.1)

J=1 J=1

for k = 1,...,d. The difference between majorization and submajorization
is that we do not require equality when k& = d.

The purpose of this chapter is to explore the basic properties of sub-
majorization, and to provide some illustrative applications. In Section 7.1
we explain a connection between submajorization and the so-called doubly
substochastic matrices, paralleling Theorem 3.1.2, which characterized ma-
jorization in terms of doubly stochastic matrices. Section 7.2 applies this
characterization to the problem of characterizing an important set of invari-
ants, the singular values, of a sum of two matrices. Finally, in Section 7.3 we
apply the results of the previous sections to obtain insight into the properties
of quantum entanglement.

Note that our development will rely heavily on Birkhoft’s theorem, which
was introduced in Section 3.1 on page 22, and developed in detail in Ap-
pendix A. In particular, the discussion below will be couched, to some ex-
tent, in the language of convex analysis introduced in the appendix, so the
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reader who has not already done so is advised to look at the appendix to
familiarize themselves with the approach taken there. In particular, it will
help to understand the first few paragraphs of material in Section A.3, up to
the statement of Birkhoff’s theorem, if not the actual details of the proofs.

7.1 Double substochasticity and submajoriza-
tion

A matrix D = (D;;) is said to be doubly substochastic if it has non-negative
entries, and all row and column sums are at most 1. Note that all dou-
bly stochastic matrices are also doubly substochastic. Furthermore, it is
clear that any square submatrix of a doubly stochastic matrix is doubly sub-
stochastic. The following theorem shows that the converse is true.

Theorem 7.1.1: Suppose D is doubly substochastic. Then D is a
submatrix of a doubly stochastic matrix E. We say that F is a
dilation of D.

Proof: Let R be a diagonal matrix with entries 1 minus the corresponding
row sums of D. Let C' be a diagonal matrix with entries 1 minus the corre-
sponding column sums of /. Then a dilation of D with the required property

D R
2 4] -

The set of d by d doubly substochastic matrices is obviously convex. The
following theorem characterizes the extremal points of this set. However,
instead of needing to go through a complex argument, as was needed for
Birkhoff’s theorem, we can instead use the embedding of the doubly sub-
stochastic matrices in the doubly stochastic matrices to apply Birkhoff’s
theorem directly.

E

Theorem 7.1.2: The extremal points of the d by d doubly sub-
stochastic matrices are the matrices having at most one entry 1
in each row and column, and Os elsewhere.
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Proof: Tt is clear that matrices of this sort are extreme points in the set
of doubly substochastic matrices. To show that they exhaust the extreme
points, let D be doubly substochastic. Dilate D to a doubly stochastic E.
By Birkhoft’s theorem E = }>;p;P; for probabilities p; and permutation
matrices P;. Observe that any submatrix of P; is a matrix having at most
one entry 1 in each row and column, and 0Os elsewhere.

We have already seen one way of embedding the doubly substochastic
matrices in the doubly stochastic matrices. Here is another useful technique:

Theorem 7.1.8: A d by d matrix D = (D,;) is doubly sub-
stochastic if and only if there exists a d by d doubly stochastic
E = (Ejj) such that Dj, < Ej;, for all j and k.

Proof: The reverse implication is clear, so we need only prove the forward
implication. Write D = 7, p;Q;, where the p; are probabilities, and the
(; are matrices with at most one entry 1 in each row and column, and Os
elsewhere. Choose permutation matrices P; such that Q); < P; elementwise.
E defined by E = >, p; P; is the required matrix. ®

We can now prove an analogue of Theorem 3.1.2, characterizing subma-
jorization in terms of doubly substochastic matrices.

Theorem 7.1.4: Let r and s be real d-dimensional vectors with
non-negative entries. Then r <, s if and only if there exists a
doubly substochastic matrix D such that r = Ds.

Proof: Suppose r <, s, and let A = Zle(sj — 1), so A > 0. Choose n
sufficiently large that A/n is smaller than the smallest positive component
of r. Suppose we dilate  and s to d + n-dimensional vectors r’ and s’ as
follows:

r = (rl,...,rd,é,...,é) (7.3)

n n
s = (s1,...,84,0,...,0). (7.4)

Then a little thought shows that ' < d’, and thus by Theorem 3.1.2, ' =
D's’, for some doubly stochastic matrix D’. It follows that r = Ds, where D
is a submatrix of D', and thus is doubly substochastic.

Conversely, suppose r = Ds, where D is doubly substochastic. By The-
orem 7.1.3, there exists a doubly stochastic E such that D;, < Ej; for all
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pairs of indices j and k. Theorem 3.1.2 implies that E's < s. Furthermore,
it is easy to see that Ds < E's, where the relation x < y on vectors means
that z; < y; for all indices j. Thus Ds < E's < s, from which we can verify
directly that Ds <, s. &

7.2 The singular values of a sum of matrices

Counsider

7.3 Majorization, submajorization, and the
Schmidt decomposition for entangled quan-
tum states

This
Problems for Lecture 7

Problem 7.3.1: Let r and s be real d-dimensional vectors with non-negative
entries. Then r <, s if and only if there exist unitary matrices u and
v such that r; = > |w;i||vjk| sk
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Chapter 8

Functions preserving
majorization

8.0.1 Isotone functions

The theory of isotone functions is concerned with maps that preserve the
majorization relation. For example, given two probability distributions p;
and ¢; such that (p;) < (¢;), we will show that —H(p;) < —H(g;), where
H(-) is the Shannon entropy.

This example illustrates the simplest type of isotone function, a Schur-
convex function. A function f : R? — R is said to be Schur-conver if

=<y = f(z) < fly) (8.1)

A function f is Schur-concave if — f is Schur-convex.
There is a close connection between Shur-convexity and more familiar
notions of convexity:

Theorem 8.0.1: The following conditions are equivalent:

1.z <y.
2. F(z) < F(y), where F(x) = X%, f(x;), for all convex func-
tions f : R — R.

Proof:
Suppose < y and f(-) is a convex function. Then x = ¥, p; Py for some
set of probabilities p; and permutation matrices P;. F(+) is a sum of convex
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functions, and thus convex, so
F(z) < X nF(Py). (5.2)
But F'(-) is manifestly permutation invariant, so F(Py) = F(y), and thus

F(x) < sz-F(y) = F(y), (8.3)

as required.

Conversely, suppose F(z) < F(y) for all convex functions f(-). Define
f(z) = |x — t|, where ¢ is some real parameter. Then f(-) is convex, so
F(z) < F(y), that is

d d
Sl —t] <3 s — 1. (8.4)
=1 =1

Since this holds for any ¢, by the order-free characterization of majorization
(Theorem 2.2.1 on page 14), it follows that x < y.

|

One consequence of this result is that the Shannon entropy is Schur-
concave; to see this, just note that f(z) = xlog(z) is convex. Similarly, the
convexity of 2% (for any k > 1) implies that 3, z¥ is a Schur-convex function.
Indeed, it is possible to give a complete characterization of the differentiable
Schur-convex functions:

Theorem 8.0.2: (Characterization of Schur-convexity)
Suppose f : RY — R is a differentiable function. Then f(-)
is Schur-convex if and only if the following two conditions are
satisfied:

1. f(+) is permutation invariant, that is, f(Px) = f(zx) for any
permutation P.

2. For each z € R? and for any pair of indices i and 7,
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Proof:

Suppose f(+) is Schur-convex. We will show that conditions 1 and 2
follow. Let P be any permutation. Then = < Pz < xz, so f(x) < f(Pz) <
f(x), whence f(z) = f(Pzx), and f is permutation invariant. This shows
condition 1. Without loss of generality, we will prove condition 2 for the case
where 1 = 1,5 = 2. Note that

(1 = t)xy + tag, txy + (1 — )9, 23, . .., 2q) < (T1,...,%4q). (8.6)
Defining A = x; — x5 this may be rewritten
($1—tA,$2+tA,l'3,...,$d> < (xl,...,xd). (87)

By the Schur-convexity of f this gives

flog —tA zg + A 23, ... xq) < f(21,...,24). (8.8)

Thus
0 < tl_i)r(l)r1+ f(xl,...,xd)—f(xl—;A,xg—i-tA,xg,...,xd) (8.9)
_ %_ g_i_ (8.10)

Substituting A = x; — 5 gives the result.

Conversely, suppose f(-) satisfies conditions 1 and 2. We will show that
f(+) is Schur-convex. To do this, it is sufficient to show that f(T'y) < f(y),
where T is a T-transform acting on the first two components of y. The reason
this is sufficient is because the permutation invariance of f(-) ensures that the
result is then true for any T-transform 7', and if x < y then x = T1T, ... T,y

for some sequence of T-transforms 77, ..., T},.
Define
Then
tdf(y(s
Fo0) - fo0)) = [ LUy, (8.12)

LOf dyr | Of dys
- i N AP 1
/0 <8y1 ds * Qyy ds ) ds (8.13)
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But y1(s) = (1 — s)y1 + sy and ya(s) = (sy1 + (1 — s)yz. Thus
0

o) = 56000 = [ (Fhim =+ 2w as (519

_ /Ot _ l(yl — ) <g_i - g—iﬂ ds.  (8.15)

Since the integrand is negative, by assumption, it follows that f(y(t)) —
f(y(0)) <0, that is, f(y(t)) < f(y(0)), as we desired to show.

|

Example: The product f(r) = [[%, x; of the components of a vector is
Schur-concave in the region of R? where z; > 0 for all components of z. To
see this, note that f(-) is permutation invariant, and

e (fh L) = e (L- L), s

ZT; T

Example: Suppose 1 < k < d. Define the kth elementary symmetric
polynomial S, : R — R by

Then Si(z) is Schur-concave.

Exercise 8.0.1: Prove that the elementary symmetric polynomials are Schur-
concave.

Exercise 8.0.2: Find a Schur-convex function that is not convex.

An isotone function f : R — R™ is a function such that z < y implies
f(z) <w y. A function is strongly isotone if © <., y implies f(z) < f(y).
A function is strictly isotone if x < y implies f(x) < f(y). The following
theorem gives a useful sufficient condition for isotonicity:

Theorem 8.0.3: Let f : R — R™ be a convex map such that for
any permutation matrix P in d dimensions there exists a permu-
tation P’ in m dimensions such that

f(Pz) = P'f(x). (8.18)

Then f is an isotone function.
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By convexwe mean that f(3; p;x;) < >, pi f(x;), where p; is any probabil-
ity distribution, and < means that the inequality holds for each component.
Proof:

Suppose © < y. Then x = >, p; P,y for some probability distribution p;
and permutation matrices P;. By the convexity of f,

flw) < X pif(Py) (8.19)
= > pPfy) (8.20)
Setting Z = Y, pi P/ f (y) we have

fl@) <& < fly), (8.21)

and thus f(z) <., f(y).

|

The Schur-convex functions are real-valued functions f such that z < y
implies f(x) < f(y). Examples of Schur-convex functions include f(z) =
> i log(xy), f(x) = ;2% (for any constant k& > 1), f(z) = —[I; 7, and
f(x) = —xt. More examples and a characterization of the Schur-convex func-
tions may be found in [8, 38]. Each such Schur-convex function gives rise to
an inequality relating the vector of probabilities (p;) in Equation (?7?) to the
vector A\?. For example, we see from the Schur-convexity of Y, z; log(z;) the
useful inequality that H(p;) > S(p), where H(-) is the Shannon entropy,
and S(+) is the von Neumann entropy. (This result was obtained by Lanford
and Robinson [34] using different techniques.) In general, any Schur-convex
function will give rise to a similar inequality relating (p;) and A?. A similar
property related to convex functions has previously been noted (see the re-
view [65] for an overview, as well as the original references [56, 57, 58, 59, 64]),
however those results are a special case [8] of the more general result given
here based upon Schur-convex functions, which may be obtained by noting
that if f(x) is convex then the map (p;) — >_; f(p;) is Schur-convex.

8.0.2 Binary functions and majorizations

A map f : R?> — R is said to be lattice superadditive if it satisfies the
condition

f(s1,t1) + f(s2,t2) < f(min(sy, $2), min(ty,t2)) + f(max(sy, s2), max(ty,t)).
(8.22)

71



The connection between lattice superadditivity and majorization will be
made shortly; for now we content ourselves with reformulating lattice su-
peradditivity in a manner that is somewhat easier to deal with. Suppose we
take two points, s and ¢, and some positive displacements €, > 0. Then the
condition of lattice superadditivity can be rewritten as

F(s+08,0)+ f(s.t+e) < fs,t)+ f(s+6,t+e). (8.23)

This rewriting of the definition also allows us to give a beautiful characteri-
zation of lattice superadditive fuctions using calculus:

Theorem 8.0.4: (Characterization of lattice superadditiv-
ity)

A twice differentiable function f : R? — R is lattice superaddi-
tive if and only if

> 0. (8.24)

at all points.

Proof:
The result follows from the observation that

/ da:/Hedya gy = fsoite) = fls,t+e = fls+8,8)+f(st).
(8.25)

If f is lattice superadditive then the right hand side must be non-negative.
Since 0 and e were arbitrary, the integrand must also be non-negative. Con-
versely, if the integrand is non-negative, then so is the right hand side, and
thus f is lattice superadditive.

|

As examples of lattice superadditive functions we have f(s,t) = s+
t and f(s,t) = st (on R2 for the latter function). These follow by the
differentiability criteria.

Exercise 8.0.3: Suppose g is twice differentiable, convex, and increasing.
Suppose f is twice differentiable, monotone increasing, and lattice su-
peradditive. Show that the composition g o f is monotone increasing
and lattice superadditive.
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Exercise 8.0.4: Show that f(s,t) = —(s — t)? is lattice superadditive.

Exercise 8.0.5: Show that f(s,t) = |s — t| is not lattice superadditive.

The significance of lattice superadditivity follows from the following the-
orem. To state the theorem, we need a couple of conventions. First, we say
that f(-,-) is monotone if it is monotone in each of its arguments. Second,
given f: R? — R we define F': R x R — R? by

F({L‘,y) = (f(xlay1)> f($2ay2)> RS f(xdayd))' (826)

Theorem 8.0.5: If f is monotone and lattice superadditive, then
for all  and y in R,

F(xt,y") <o Flz,y) <Y F(z', yb). (8.27)

Proof:

|

The functions f(z,y) = (¢ +y) and f(z,y) = zy are both examples
of monotone lattice superadditive functions. As a consequence we have the

useful results:
(et +y) <pr+y <2zt + 9yt (8.28)
ohoyl <z.oy<atoyh (8.29)

The next result provides another connection between quantum mechanics
and majorization that is especially useful in the present context.

Theorem 8.0.6:

Suppose A and B are Hermitian matrices. Then there exists a
doubly stochastic matrix D depending only on the bases in which
A and B are diagonal (and not on their eigenvalues) such that

tr(AB) = (Aa, DAp). (8.30)

Conversely, for any vector b such that b < Ap, there exists an
operator B unitarily equivalent to B such that

tr(AB) = (A4, b). (8.31)
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Proof:
There exist unitary U and V' such that

tr(AB) = tr(UA(A)UTVA(B)VT. (8.32)

Defining W = VU this may be rewritten
tr(AB) = tr(WA(AWTA(B)) (8.33)
= > IWyPA(A)AN(B);. (8.34)

ij

Defining D;; = |W;;|* gives

tr(AB) = (AM(A), DAp). (8.35)
The converse now follows from the existence of an orthostochastic D such
that b = D)\B
|

This is a very interesting result. It tells us that the average of an observ-
able A can be written

(A) = tr(pA) = (N, DAa), (8.36)

for some doubly stochastic D depending only on the bases p and D are
diagonal in.
One useful corollary of this result is that

(A4 ML) < tr(AB) < (M, D). (8.37)

This line of thought can be used to put useful bounds on the fidelity. The
fidelity between density matrices p and o is defined by

F(p,0) = try/p'/20pt/2. (8.38)

It can be shown that
F(p.0) = max|tr(y/5v/aU)]. (8.39)

where the maximization is over all unitary U. Thus

F(p,o) > tr(p/?c'/?) (8.40)
> F(ALAD. (8.41)
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Chapter 9

Lidskii’s theorem

Recall the simple consequence of the Fan maximum principle that for Her-
mitian matrices R and S, A(R + S) < A(R) + A(S). There is a stronger
perturbation result for eigenvalues known as Lidskii’s theorem, which has a
rather similar form:

MR+ 8) — MR) < A(S). (9.1)

It is easy to see that Lidskii’s theorem implies the weaker result A(R + .5) <
A(R) + A(S). However, the converse implication does not follow easily (at
least so far as is known). According to Bhatia [8], Lidskii’s theorem was
originally noted by Lidskii in 1950 [35], who provided an elementary matrix-
analytic proof of a result of Berezin and Gel’fand [7]. The proof given in this
appendix is a simplification of a proof given by Smiley [55].

Our proof of Lidskii’s theorem relies on a simple lemma known as Cauchy’s
interlacing theorem, which states that if A is a d by d matrix and B =
PAP where P is a projector onto a d — k-dimensional space, then for j =
1,2,...,d—k

A(4) = A(B) = AgsalA). (9.2)

Cauchy’s interlacing theorem is easily proved directly, and we omit the de-
tails. (See Section III.1 of [8] for a detailed proof.)

The proof of Lidskii’s theorem is by induction on the dimension d the
matrices R and S live in. For d = 1 the result is trivial, so we assume the
result is correct in dimension d — 1 and prove the result for dimension d, that
is,

A (9.3)
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We used the result A(R+5) < A(R) + A(S) to establish a set of dynam-
ical constraints on the amount of information obtained through a quantum
measurement. Might it possible to further strengthen this result by using
Lidskii’s theorem? I don’t know the answer to this question, but it does
seem an interesting possibility for further work.
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Part 1V

Majorization and entanglement
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Chapter 10

Entanglement transformation

10.1 Entanglement transformation

The problem of entanglement transformation is a natural context in which the
results of the present paper may be applied. The problem of entanglement
transformation arises as a consequence of the fundamental question of how
may we convert one type of physical resource into another, and there has been
considerable effort devoted to determining when it is possible to convert one
type of entanglement to another. In [40] a connection was noted between
entanglement transformation and majorization, namely, that if |¢)) and |¢)
are pure states of a bipartite quantum system with components belonging to
Alice (A) and Bob (B) respectively, then Alice and Bob can transform the
state [¢) into the state |¢) using local operations on their respective systems
and classical communication between Alice and Bob, if and only if

)\¢ < /\¢, (10.1)

where A, (respectively A4) is the vector of eigenvalues of the reduced density
matrix for Alice’s system when the joint system is in the state [¢) (|¢)). As
per usual, the components of such vectors are ordered into non-increasing
order. This result has subsequently been generalized by Vidal[61] to the case
of conclusive transformation, and even further by Jonathan and Plenio[31]
to the problem where Alice and Bob are supplied with a state |¢)) and wish
to tranform this state into an ensemble of states in which the state |¢;)
occurs with probability p;. (See also Hardy[19] for an instructive alternative
approach to results of this type.) The necessary and sufficient condition for

78



such a transformation to be possible is that[31]:
Ap =D Didg, (10.2)

We now explain how this result can be seen as an easy consequence of the
results proved in the present paper, and thus the connection between ma-
jorization and entanglement is really a consequence of a deeper connection
between majorization and measurement. By a result of Lo and Popescu[37],
it is possible to transform |¢) into the ensemble {p;,|®;)} by local opera-
tions and classical communication if and only if it is possible to make the
transformation via the following simplified procedure: first, Alice performs
a generalized measurement on her state, then sends the result to Bob, who
performs a unitary operation on his system conditional on the outcome of the
measurement Alice made. Let p = trg(|1)(1]) be the initial state of Alice’s
system, and suppose Alice performs a quantum measurement described by
measurement matrices Ej;, so that outcome ¢ occurs with probability p; and
(E;®@U;)lb) = \/pi|¢s), for some unitary operator U; acting on Bob’s system.
Considering Alice’s system alone and observing that that F; pE';r = 0;, where
o; = pitr(|é:) (#]), we deduce from Theorem 2 that

/\p < sz‘/\aia (103)

which is equivalent to (10.2). To prove the converse, suppose (10.2) holds.
Then by Theorem 4 there exists a quantum measurement described by mea-
surement matrices £;;, and probabilities p;; such that

Ez‘jPEiTj = Dij0i; sz‘j = Di- (10.4)
J

The procedure for Alice and Bob to produce the ensemble is for Alice to per-
form the measurement described by the set E;;. The post-measurement state
|¢i;) is then a purification [43] of the state ¢;, and it can be shown (see [27] or
Section 2.5 of [43]) that by performing an appropriate unitary transformation
Bob can convert the state |¢;;) into the state |¢;), with total probability p;
of obtaining the state |¢;). Thus Equation (10.2) represents a necessary and
sufficient condition for it to be possible to transform the state [¢)) into the
ensemble {p;, |¢;)} by local operations and classical communication.
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Chapter 11

Application to separability

A remarkable feature of quantum entanglement is that an entangled state
of two parties, Alice (A) and Bob (B), may be more disordered locally than
globally. That is, S(A) > S(A, B), where S(-) is the von Neumann entropy.
It is known that satisfaction of this inequality implies that a state is non-
separable. In this paper we prove the stronger result that for separable states
the vector of eigenvalues of the density matrix of system AB is majorized by
the vector of eigenvalues of the density matrix of system A alone. This gives
a strong sense in which a separable state is more disordered globally than
locally and a new necessary condition for separability of bipartite states in
arbitrary dimensions. We also investigate the extent to which these condi-
tions are sufficient to characterize separability, exhibiting examples that show
separability cannot be characterized solely in terms of the local and global
spectra of a state. We apply our conditions to give a simple proof that non-
separable states exist sufficiently close to the completely mixed state of n
qudits.

Quantum mechanics harbours a rich structure whose investigation and ex-
plication is the goal of quantum information science[43, 50]. At present only
a limited understanding of the fundamental static and dynamic properties
of quantum information has been obtained, and many major problems re-
main open. In particular, we would like a detailed ontology and quantitative
methods of description for the different types of information and dynamical
processes afforded by quantum mechanics. An example of the pursuit of these
goals has been the partial development of a theory of quantum entanglement;
see, e.g., [6, 40, 23, 60, 61] and references therein.

The separability or non-separability of a quantum state is a question that
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has received much attention in the development of a theory of entanglement.
The notion of separability captures the idea that a quantum state’s static
properties can be explained entirely by classical statistics, and is sometimes
claimed to be equivalent to the notion that a state is “not entangled”. More
precisely, a state pap of Alice and Bob’s system is separable[66] if it can be
written in the form pap = 32, q;p; ® 0, for some probability distribution
{g;}, and density matrices p; and o; of Alice and Bob’s systems, respec-
tively. Thus, we can think of Alice and Bob’s systems as having a local,
pseudo-classical description, as a mixture of the product states p; ® o; with
probabilities g;. Note that separability is equivalent to the condition

pAB = ij\wjﬂ?/}ﬂ ® |é;) (4], (11.1)

where {p;} is a probability distribution and [¢;), |¢;) are pure states of Alice
and Bob’s systems, respectively.

One reason for interest in separability is a deep theorem due to M., P. and
R. Horodecki connecting separability to positive maps on operators[23]. The
Horodeckis used this theorem to prove that the “positive partial transpose”
criterion for separability introduced by Peres[46] is a necessary and sufficient
condition for separability of a state pap of a system consisting of a qubit in
Alice’s possession, and either a qubit or qutrit in Bob’s possession. More
precisely, if we define pz% to be the operator that results when the transpo-
sition map is applied to system B alone, then the Horodeckis showed that
pap is separable if and only if pEBB is a positive operator. Unfortunately, this
criterion, while necessary for a state to be separable in higher dimensions[46],
is not sufficient.

A hallmark of quantum entanglement is the remarkable fact that individ-
ual components of an entangled system may exhibit more disorder than the
system as a whole. The canonical example of this phenomenon is a pair of
qubits A and B prepared in the maximally entangled state (|00) +|11))/v/2.
The von Neumann entropy S(A) of qubit A is equal to one bit, compared
with a von Neumann entropy S(A, B) of zero bits for the joint system. Clas-
sically, of course, such behaviour is impossible, and the Shannon entropy
H(X) of a single random variable is never larger than the Shannon entropy
of two random variables, H(X), H(Y) < H(X,Y). It has been shown [26]
(see Chapter 8 of [39] and [12, 25] for related results) that an analogous
relation holds for separable states,

S(A),S(B) < S(A, B). (11.2)
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This result is a consequence of the concavity of S(A, B) — S(A) [36, 43],
since when pap = X;qjp; ® o5 we have S(A,B) — S(A) > ¥, ¢;(S(p; ®
g;) —S(p;)) > 0. Unfortunately, the inequalities (11.2) are insufficient to
characterize separability. To see this, consider the Werner state of two qubits
pp = PI) ([ + (1 =p)I/4 (0 < p < 1) and [¥) = (|00) + [11))/v2. The
positive partial transpose criterion implies that the state is separable iff p <
1/3. The marginal density matrices being fully mixed for all p, however, one
obtains S(A) = S(B) =1 < S(A,B) = H(&E%2 L2 L2 1P) for 0 < p <
0.747..., so the condition (11.2) is fulfilled for a range of inseparable states.
The notion of von Neumann entropy is a valuable notion of disorder in
a quantum state, however more sophisticated tools for quantifying disorder
exist. Omne such tool is the theory of majorization, whose basic elements
we now review (see Chapters 2 and 3 of [8], [38] or [1] for more extensive
background). Suppose x = (z1,...,24) and y = (y1,...,yq) are two d-
dimensional real vectors; we usually suppose in addition that x and y are
probability distributions, that is, the components are non-negative and sum
to one. The relation x < y, read “x is majorized by y”, is intended to capture
the notion that z is more “mixed” (i.e. disordered) than y. Introduce the
notation | to denote the components of a vector rearranged into decreasing
order, so zt = (:E%, . ,xcll), where x% > x% > ... > xil. Then we define = < v,

if

k
Yook <Yyl (11.3)

j=1 j=1

for k = 1,...,d — 1, and with the inequality holding with equality when
k = d. To understand how this definition connects with disorder consider
the following result (see Chapter 2 of [8] for a proof): = < y if and only
x = Dy, where D is a doubly stochastic matrix. Thus, when z < y we
can imagine that y is the input probability distribution to a noisy channel
described by the doubly stochastic matrix D, inducing a more disordered
output probability distribution, . Majorization can also be shown [8] to be
a more stringent notion of disorder than entropy in the sense that if z < y
then it follows that H(x) > H(y).

Given the known connections between measures of disorder such as the
von Neumann entropy and separability, it is natural to conjecture that there
might be some relationship between separability and the vectors A(pag), A(pa), A(ps)
of eigenvalues for p4p and the corresponding reduced density matrices. Ma-
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jorization suggests the following theorem as a natural way of strengthening
the necessary conditions for separability, Equation (11.2):

Theorem 11.0.1: 1If pap is separable then

AMpag) < Mpa) and Apag) < Mps). (11.4)

By convention we append zeroes to the vectors A(p4) and A(pp)
so they have the same dimension as A(pag).

Theorem 1 is the main result of this paper. Note that it provides a more
stringent criterion for separability than (11.2), since for any two states p and
o, M(p) < A(o) implies that S(p) > S(o), but not necessarily conversely.
Proof: 1f pap is separable, it may be written in the form of (11.1). Let
pap = > Tklex)(ex| be a spectral decomposition for pap. By the classifica-
tion theorem for ensembles (Theorem 2.6 in [43]) it follows that there is a
unitary matrix ug; such that

VTiler) = ZUkj\/P_j|¢j>|¢j>- (11.5)

Next we trace out system B in (11.1) to give pa = >, p;[v;)(¢;]. Let-
ting pa = >, a|fi)(fi]| be a spectral decomposition and applying the clas-
sification theorem for ensembles we see that there is a unitary matrix v

such that |/p;j[v;) = X v/l fi). Substituting into (11.5) gives \/rilex) =
i1 V@i fi)|¢5). Multiplying this equation by its adjoint and using the
orthonormality of the vectors |f;) we obtain

T = ZDklal. (116)
l

where
Dy =) U, Ukjp Vs V51 (Do | 0, - (11.7)
Jij2
To complete the proof all we need to do is show that Dy, is doubly stochastic.

The fact that Dy; > 0 follows by defining |yu) = X uxjvj|¢;) and noting
that Dg = (Yu|vk) = 0. From (11.7) and by the unitarity of u we have

ZDW - Z J1J2 jllUJQl ¢J1|¢J2 ZU Ui =

JiJ2
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Similarly, >; Dy, = 1, and thus D is a doubly stochastic matrix. H

The separability criterion (11.4) is strictly stronger than the entropic cri-
terion (11.2). Indeed, for Bell-diagonal states of two qubits, it follows from
the positive partial transpose criterion and a straightforward calculation that
condition (11.4) is equivalent to separability, whereas as remarked earlier the
condition S(A),S(B) < S(A, B) is not sufficient to characterize separability
even for the more restricted case of Werner states. More generally, the sepa-
rability criterion (11.4) completely characterizes the separability properties of
Werner states in arbitrary (d) dimensions. More precisely, states of the form
pp = PIWYW|+ (1—p) [d2T where [@) = (J00)+ [11)+. ..+ |(d—1)(d—1)})/Vd
are known to be separable iff p < 1/(d+1) [14]. The marginal density matri-
ces of these states are completely mixed and the criterion (11.4) thus becomes

1
&
which is easily seen to be equivalent to p < 1/(d + 1).

Another interesting application of the conditions (11.4) is to the problem
of finding non-separable states near the completely mixed state 1¥"/d" of
n qudits (d-dimensional quantum systems). Consider the state p = (1 —
e)I®™/d™ + €|) (|, where |¢) is the cat state of n qudits. Partitioning
the n qudits so that the first n — 1 belong to Alice, and the final qudit
to Bob, a straightforward calculation shows that the conditions (11.4) are
violated whenever ¢ > 1/(1 + d"'), and thus p must be inseparable when ¢
satisfies this condition. Note that this result has previously been obtained by
other techniques [47, 52] (see also [15, 63, 11, 10]), however the utility of the
conditions (11.4) is demonstrated in this application by the ease with which
they are applied and their generality, as compared to the more complex and
state-specific arguments used previously to study the separability of p.

It is natural to conjecture the converse to Theorem 1, that if both the

conditions in (11.4) hold then pap is separable. Unfortunately, this is not
the case, as the following two qubit example shows.
Ezample 1: Let phz = p|00)(00] 4+ (1 — p)|®)(P| with the Bell state |®) =
(|01) 4-|10))/+/2. Then the partial transpose criterion implies that this state
is non-separable whenever p # 1. However A(plyp) = (p,1 —p) < Mphp) =
((14+p)/2,(1 —p)/2) for 1/3 < p, that is, criterion (11.4) is fulfilled for this
non-separable state.

More generally, we now show that attempts to characterize separability
based only upon the eigenvalue spectra A(pap), A(pa) and A(pp) can never

(1+(d®=Dp,1—p,....1—p)<~=(1,...,1), (11.8)
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work. We will demonstrate this by exhibiting a pair of two qubit states pap
and oap such that all these vectors of eigenvalues are the same (i.e., the
states are globally and locally isospectral), yet pap is not separable, while
OAB IS.

Isospectral Example:

(11.9)

O O wli

100 0 00
11011 0 00

PAB= 31 10| 9487 0 0
0000

e}

0 0

whe O O O

The isospectrality of the these states may be checked by direct calculation,
and the fact that psp is non-separable while 045 is follows from the partial
transpose criterion. (Note that similar examples have also been found by
Richard Davis (private communication).) It is worth emphasizing how re-
markable such examples are: these density matrices have the same spectra,
both globally and locally, yet one is separable, while the other is not. This
runs counter to the often-encountered wisdom that a complete understand-
ing of a quantum system can be obtained by studying the local and global
properties of the spectra of that system. This is the point of view appar-
ently adopted, for instance, in the theory of quantum phase transitions[53],
perhaps leading to the disregard of important physical effects in that theory.
Given the isospectral example it is natural to ask under what conditions
a separable state exists, given specified global and local spectra. We can
report the following result in this direction.
Theorem 2: 1If pap is a density matrix such that A(pap) < A(pa), then
there exists a separable density matrix o4p such that AM(oap) = AM(pap) and

AMoa) = A(pa)-

Proof:

Suppose () = AM(pap) and (s;) = A(pa). By Horn’s lemma(21, 41], there
is a unitary matrix u;j, such that s; = > |ujk|*rr. Introduce orthonormal
bases |j) for system B and |k) for system A, and for each non-zero r; define

; k
Ziugr/Sulk) (11.10)
VTi
Then define o = 3°;7;[10;)(¢;] ® |5)(j|. Note that o is manifestly separa-
ble with spectrum A(pap), while a simple calculation shows that trp(o) =
>i sklk) (k|, and thus A(04) = A(pa), completing the proof. ®

;)
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A stronger conjecture is that whenever both A(pap) < A(pa) and Apg),

then there exists a separable state 045 which is isospectral to p4p. Unfortu-
nately, the following theorem shows that this is not true.
Theorem 3: For the class of states p’) 5 in Example 1 (which are non-separable
when 1 > p > 1/3) the separability conditions (11.4) are fulfilled yet there is
no separable 045 (globally and locally) isospectral to p% 5 when 1 > p > 1/2.
Proof: Suppose 0 = oap is a separable state isospectral to p¥z. Then
o = pls1)(s1] + (1 — p)|s2)(se| for orthonormal states |s;) and |s3). We sup-
pose for now that ¢ can be given a separable decomposition with only two
terms, 0 = glai){ay| @ |b1) (b1] + (1 — q)|az){az| @ |b2) (ba|. We show later that
this is the only case that need be considered. Define angles «, § and ¢ by
[{a1|b1)] = cos(a); [{az|b2)| = cos(B); cos(¢) = cos(a) cos(f). Then the global
and local spectra for o are easily calculated,

Noam) = (1 +1/1- 4q(21 —q) sm2(¢)) |

with similar expressions for A\(04) and A(op), with a and (3 appearing in place
of ¢. Assuming 1/2 < p this gives sin?(a) = sin?(3) = (1 —p?)/4q(1 —q) and
p(1—p) = q(1 — q)sin*(¢). Using sin*(¢) = 1 — (1 —sin*(a))(1 —sin?(3)) to
substitute the former expression into the latter, we find ¢(1—¢q) = (1+p)?/8.
For p > v/2—1 = 0.41 there is no ¢ in the range 0 to 1 satisfying this equation,
so we deduce that no such separable state o can exist.

To complete the proof we show that any separable decomposition o =
>i q5laz)(aj] ® |bj)(b;| can be assumed to have two terms. Without loss
of generality we assume that there is no redundancy in the decomposition,
that is, there do not exist values j # k such that |a;)|b;) = |ak)|bk) (up
to phase). We show that assuming the decomposition has three or more
terms leads to a contradiction. Note that the decomposition must contain
contributions from at least two linearly independent states, say |a;)|b;) and
|ag)|by). Furthermore, because rank(c) = 2 any other state in the sum must
be a linear combination of these two states, |a;)|b;) = ayla1)|b1) + B;laz)|bs).
By the no-redundancy assumption neither |a;| = 1 nor |3;| = 1, so we must
have 0 < |a;l,|8;] < 1. Consider now three possible cases. In the first case,
la1) = |az) (up to phase), in which case |a;) = |a;) (up to phase) for all j,
and thus A(oa) = (1,0) # A(pY), a contradiction. A similar contradiction
arises when |by) = |by) up to phase. The third and final case is when neither
la1) = |ag) nor |b1) = |by) up to phase. In this case aj|ai)|bi) + Bjlaz)|b2)

(11.11)
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cannot be a product state, a contradiction. H

Given that attempts to characterize separability based on the local and
global spectra are doomed to failure, it is still interesting to ask whether the
conditions A(pap) < A(pa) and Apap) < A(pp) are equivalent to some other
interesting physical condition? We have tried to find such an equivalence,
with little success, but can identify several plausible possibilities which these
conditions are not equivalent to. They are not equivalent to the property of
violating a Bell inequality, of having a positive partial transpose, or of being
distillable. Another interesting idea is to find states which have positive
partial transposition, but which violate (11.4). Such a state will necessarily
be bound-entangled [24]. We have not yet identified any such states, despite
searching through several of the known classes of bound-entangled states,
and doing numerical searches.

In summary, we have connected two central notions in the theory of en-
tanglement, using majorization to obtain a simple set of necessary conditions
for a state to be separable in arbitrary dimensions. Understanding the phys-
ical import of these conditions and their relationship to criteria such as the
positive partial transpose conditon remains an interesting problem for further
research.

Problems for Lecture 11
Problem 11.0.1: Let p; be probabilities and [¢);) be states of some system

A. Choose B to be a system with orthonormal basis |7) labelled by the
index j for the states |1);), and define the separable state

p =S nilt) (5] ® 7). (11.12)

Apply the criterion of Theorem 11.0.1 to the state p to conclude that
(p;) < A (S 251050
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Chapter 12
Open problems

Exercise 12.0.1: (Entanglement transformation with no communication)

Suppose Alice and Bob can convert [i) to |¢) by local operations with
no classical communication. Show that a necessary and sufficient con-
dition for this to be possible is that there exist a vector r such that
q ®r = p. Describe an algorithm to check whether such an r exists.
Find an example of entanglement conversion possible with local opera-
tions and classical communication that is not possible without classical
communication.

Now is an exciting time to be working on majorization and its applica-
tions to quantum information theory, because there are so many interesting
open problems to be solved. In the next few sections I will describe some
of the problems, conjectures as to the nature of their solution, and describe
some partial progress I have made. Please contribute by supplying solutions
(preferably complete, but I'm not picky), and suggestions for more prob-
lems, or other ideas for proof-techniques. The main line of thought concerns
problems related to entanglement transformation.

12.0.1 Entanglement catalysis

Let’s start with entanglement catalysis. Jonathan and Plenio[30] have discov-
ered an interesting procedure for doing entanglement transformations. The
idea is that there exist pure states |¢0) and |¢) such that neither |¢)) — |¢) nor
|¢) — [1), but there may be a catalysing state |I) such that [)[l) — |P)|]).
As an explicit example of this, Jonathan and Plenio offer as an example the
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states

1) = V0.4]00) +V0.4]11) + v/0.1|22) + +/0.1]33) (12.1)
) = V0.5/00) ++/0.25/11) + +/0.25/11) (12.2)
1) = 10.6/00) ++/0.4[11). (12.3)

It is easy to check the appropriate majorization conditions and verify that it
is possible to make the transformation [)[l) — |4)[l).

Problems for Lecture 12

Problem 12.0.2: (37) What are necessary and sufficient conditions on
|1)) and |¢) for the existence of a state |l) catalysing the transformation

[¥) = [9)7

Another way of stating this problem is in purely mathematical terms,
Problems for Lecture 12

Problem 12.0.3: (37) What are necessary and sufficient conditions on
real vectors x and y such that there exists a real vector z with r ® 2z <
y® 2?7

I have not solved this problem, but I can report some partial results and
ideas about how to approach the problem that may yield fruit. What we are
looking to characterize is a new partial order, <7, on vectors x and y; we
say © <r y if there exists z such that x <r y. We say that = is trumped by
y, with z as catalyst. Equivalently, y trumps x, with 2z as catalyst.

Exercise 12.0.2: (Jonathan and Plenio (1999)) Show thatz <7 y and
y <7 z if and only if 2! = y'.

Additive Schur-convex functions and catalysis

One approach to the catalysis problem is via the theory of Schur-convex
functions. This gives rise to some necessary conditions for x <7 y:
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Theorem 12.0.2: Suppose f(-) is a family of Schur-convex func-
tions that is additive in the sense that f(z ® z) = f(z) + f(2).
Then = <7 y implies f(x) < f(y).

Proof:
Suppose x <7 y. Then there exists z such that + ® 2z < y ® 2. Since f is
Schur-convex, we obtain

flz®z) < fly® =), (12.4)
which by additivity is equivalent to
f@) + f(2) < fy) + f(2). (12.5)

Thus f(x) < f(y).

|

There are many examples of additive Schur-convex functions: minus the
Shannon entropy —H (x), minus the Renyi entropies log(3>; z¥) for k > 1,
the log of the largest eigenvalue, minus the log of the smallest eigenvalue,
and the product of eigenvalues. All of these families give rise to interesting
constraints on the trumping relation. Suppose that z <7 y. Then these
additive Schur-convex functions give rise to the following constraints on x
and y:

H(z) > H(y) (12.6)
d d
Soab < Y yF fork>1 (12.7)
=1 =1
v < oyl (12.8)
o> g (12.9)
d d
[z > Iy (12.10)
=1 =1

I think it is reasonably likely that there is a simple family of additive Schur-
convex functions whose monotonicity provides a simple set of necessary and
sufficient conditions for the trumping relation, much as the family of func-
tions Y, |z; — t| characterizes majorization. One might take many different
approaches to this problem. For example: Problems for Lec-

ture 12
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Problem 12.0.4: Prove that x <r y if and only if f(z) < f(y) for all
families of additive Schur-convex functions f.

Convexity and catalysis

Another approach to the catalysis problem is to try to study the convex
structure of the problem. My guess, based on the partial results reported
below, is that this will ultimately be the approarch that is most fruitful.

Recall that the set S(y) of points z such that x < y is just the convex hull
of all vectors of which may be obtained by permutation of the components
of y. One approach to the problem of entanglement catalysis is to study the
set T'(y) of vectors x such that z <7 y. The following result shows that this
set is also convex.

Theorem 12.0.3:

Let T'(y) denote the set of vectors x such that @ <7 y. Then T'(y)
is a convex set.

Proof:

Let 0 <p <1, and x1,25 € T(y). We will show that = px; + (1 — p)xs
is also an element of T'(y). To do this, let z; and 2z, be catalysts for x;
and x5 respectively, and let D; and D, be doubly stochastic matrices such
that D;(y ® z;) = z; for 1 = 1,2. We claim that z; ® 2, is a catalyst for .
To see this, define D = pf)l + (1 - p)f)g, where it is understood that D;
acts non-trivially on the first and second terms in the tensor product, and
D, acts non-trivially on the first and third terms in the tensor product, so
Dy®z1®20) =pr1 @21 @20+ (1 —=p)ra ® 21 ® 29 = T ® 21 ® 2, and thus
zeT(y).

|

Exercise 12.0.3: Show that S(y) C T'(y).

Exercise 12.0.4: Show that y is a boundary point of T'(y).

Problems for Lecture 12
Problem 12.0.5: (35-40) What are the extreme points of the set T'(y)?
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I can report some rather curious and perhaps surprising progress towards
solution of this problem. It relies on the result that:

Lemma 12.0.4: Suppose z; < y, and p; is a probability distri-
bution with no zero entries. Then if y = >, p;x;, it follows that
x; =y for all i.

Proof:

y is extremal in S(y), and the x; are elements of S(y). Thus x; = y for
all 7.

|

Theorem 12.0.5: y and permutations of y are extreme points of
T(y).

Proof:

Suppose y = px1 + (1 — p)zy is a convex combination of points z; and
x9 in T'(y). Let z; and 2z be the corresponding catalysts, and Dy and Dj be
doubly stochastic matrices chosen so that D;(y ® z;) = z; ® z;. Then

YR 2 ® 2z = [(pr1 + (1 — p)as] ® 21 ® 25. (12.11)

By the lemma, y® 2z ® 29 = 11 ® 21 ® 25, from which we conclude that x; = y.
Similarly, x5 = y, and we see that y is extremal. Similarly, permutations of
y are also extreme points oy T'(y).

|

What this result implies is that 7'(y) must have a more complicated geo-
metric structure than S(y), since the extreme points of T'(y) contain (some-
times strictly, otherwise < would be the same as <r) the extreme points of
S(y).

As an example of convex sets with a similar property, consider a square
inscribed on a circle. The set of points C' inside the circle is convex, as is the
set of points inside the square, S. The extreme points of C' are all the points
on the circle, a continuum of points. The extreme points of the square are
the four corner points, a strict (indeed finite) subset of the extreme points of
the circle.

I conjecture that S(y) and T'(y) are related in a similar way. S(y) has only
a finite number of extreme points. Intuitively, the reason this is so is because
S(y) is formed by intersecting a finite number of half-plans, corresponding
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to the finite set of inequalities that have to be satisified. (Strictly speaking,
there is an ambiguity because of the ordering in the inequalities, but there
are only a finite number of orderings as well.) By contrast, there is an infinite
set of inequalities, corresponding to the continuum of possible catalysts, that
may potentially be checked in order to determine whether x <7 y. For this
reason I ask that you prove the following conjecture: Problems for

Lecture 12

Problem 12.0.6: Show that 7'(y) has a continuum of extreme points.

Computational approach to convexity

In order to attack problems on the convex structures associated with <r, it
may help to use some of the ideas of computational geometry. An introduc-
tion to these ideas and further references are given in the book by Preparata
and Shamos [49], which you can borrow from me. In particular, there are
algorithms in that book which allow one to numerically find the convex hull
of a set of points.

One way of doing so is to look at the set of points T'(y, z), defined to be the
set = such that x® 2z < y®z. It is not difficult to prove that T'(y, z) is convex.
Moreover, T'(y, z) is quite amenable to numerical study. By fixing y and z,
and then doing a search for x such that z ® z < y ® 2, we can numerically
characterize T'(y, z). We can algorithmically determine the extremal points
of T'(y,z). Hopefully, by inspection of the extremal points it will become
possible to discern some structure in the etxremal points of T'(y, 2).

Other computational questions

We can generate computational questions related to catalysis pretty much
ad infinitum, and attempt to answer them. How much power does it add to
add extra dimensions to the catalyst?

Double stochasticity

Another approach to the problem of catalysis is via the connection with
double stachasticity: = <p y if and only if there exists z and a doubly
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stochastic D such that z ® z = d(y ® z). Unfortunately, I don’t have any
really good ideas on how to exploit this approach. Instead of listing good
ideas, I'll list a few half-baked ones.

First, one can try to specialize. What does it say if we restrict D to be
ortho-stochastic? Unitary-stochastic? A product of T-transforms? What if
we specialize further, and look at the actual structure of the relevant proofs.
One apporach which I think has some promise is to use the proof that it is
sufficient to consider products of T-transforms. There’s actually quite a bit
of structure in the sequence of T-transforms generated by that proof, which
might be exploitable here. (I have a sneaking suspicion that conjugating the
sequence of T-transforms in just the right way might lead to a substantial
simplification of the sequence of T-transforms on the tensor product. No
luck yet, however.)

Another approach is to try looking at environmental models for doubly
stochastic maps. This might help by reducing the problem more to being
one about permutations on product spaces — the study of which would also
be a direction in which to head.

Miscellaneous questions

There’s a bundle of other open problems that don’t really fit in any of the
categories we've looked at so far. I've collected them here, in a more or less
disorganized fashion. Hopefully, as we solve the problems a better structure
to lay all this out will become apparent.

Probably my favourite open problem is the following!: Problems

for Lecture 12

Problem 12.0.7: A vector z with non-negative real components summing
to 1 is said to be non-uniform if it has two non-zero components that
are not equal. I conjecture that if z is any non-uniform vector then
there exist z and y such that z Ay, but 1 ® 2 < y ® 2.

I think it very likely that this conjecture is true. What’s better, I also
think it’s very important if true, and probably not too difficult to prove! This
is why I like the problem.

IThis conjecture has recently been proved. (Daftuar et al (to appear).)
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The following two easy exercises demonstrate some related applications
of the notion of uniformity.

Exercise 12.0.5: Suppose z <7 y, and x is uniform. Show that z < y.
Exercise 12.0.6: Suppose = <7 y, and y is uniform. Show that x < y.
Another problem is>: Problems for Lecture 12

Problem 12.0.8: Suppose the primary system is d dimensional. Is it pos-
sible to put an upper bound on the size of the Hilbert space for the
catalyst?

A good way of getting insight into this problem is to do numerical searches.
My own bet is that if there is a bound, it is d or d* dimensions. (However,
my thinking has shifted, and I now think it likely that more dimensions will
always give more catalysts that catalyse transformations not previously pos-
sible. It would be very exciting to find a four dimensional example which
needed a five or seventeen dimensional catalyst, as such an example would
rule out the d and d? conjectures. )

12.0.2 Entanglement banking

So far, I haven’t had any luck solving the problem of when entanglement
catalysis is possible. However, it may be possible to make progress by using
other problems to bridge the gap between what we know of majorization and
the catalysis problem.

A useful metaphor for generating other problems is a financial metaphor
for entanglement catalysis. Imagine that Alice and Bob share a state |1)
which they wish to turn into another state |¢), by local operations and clas-
sical communication. To do so, they go to Entanglement Banking Corpora-
tion, and ask for the loan of an entangled state |I). In standard entanglement
catalysis, they must repay the loan (with no interest) after performing the
transformation [i)[l) — [@)]l).

Is it possible to perform the transformation in such a way that Alice and
Bob pay interest to the bank, in the sense that they make the transformation
|V)1) — |@)|r), and the “repayment” |r) is more entangled than the loan |l)
in the sense that |r) — |I) but not vice-versa.

2This problem has recently been settled in the negative by Klimesh et al (to appear).
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12.0.3 Other directions

We’ve mostly so far been focused fairly inward on the problem of entangle-
ment transformation. Let’s look outward.

Vidal has solved the following problem: given |¢)), what is the maximum
probablitiy of obtaining a state |¢) for |¢), by local operations and classical
communication? Not surprisingly, the answer involves majorization. It also
gives rise to numerous interesting problems: Problems for Lec-

ture 12

Problem 12.0.9: (17) Can you find states |¢) and |¢) of entangled qubits,
and a catalysing state |c) such that the probability of being able to
transform from |¢) to |¢) is enhanced by the presence of the catalyst?

Wootters and collaborators [68, 20, 6] have studied the problem of the
entanglement of formation — how many Bell states are needed to generate
many copies of an entangled mixed state. It is possible that the results of
Jonathan and Plenio can be used to get some insight into this work.
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Appendix A

Birkhoff’s theorem

Birkhoft’s theorem is a structure theorem characterizing the extremal points
of the convex set of doubly stochastic matrices. It plays a role in the the-
ory of double stochasticity analogous, for example, to the spectral theorem
in the theory of Hermitian matrices. In other words, it’s a very powerful
representation theorem!

The statement of Birkhoft’s theorem is very simple. It says that any d by
d doubly stochastic matrix, D, can be represented as a convex combination
of d by d permutation matrices. That is, D = 32, p;P;, for some set of
probabilities, p;, and corresponding permutation matrices, P;. Conversely,
any convex combination of permutation matrices is doubly stochastic. Thus,
Birkhoft’s theorem provides us with a way of representing doubly stochastic
matrices in terms of objects that, a priori, are much simpler to deal with,
namely, probability distributions and permutation matrices.

One reason for interest in Birkhoff’s theorem is Theorem 3.1.2, on page 20,
which implies that » < s if and only if there exists a doubly stochastic matrix
D such that r = Ds.

Note that in the statement and proof of Theorem 3.1.2, not only did we
prove that 7 < s if and only if r = 37, p; P;s, we also proved that r < s if and
only if r = Ds for some doubly stochastic matrix D. Thus, in some sense,
applying Birkhoff’s theorem in the context of Theorem 3.1.2 does not add
anything immediately to our knowledge of majorization. We will come back
to this point below.

You might reasonably wonder whether or not we can deduce Birkhoft’s
theorem from Theorem 3.1.2. We can certainly deduce that, given a doubly
stochastic matrix, D, and for any particular vector, s, there exist probabilities
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p; and permutation matrices P; such that Ds = 3, p;Pjs. This does not
mean, however, that Ds = }>;p;P;s for all vectors, s. Unfortunately, so
far as I am aware, there is not any direct way of going from a proof of
Theorem 3.1.2 to Birkhoff’s theorem. (Although finding such a path might
make a nice research problem!)

One might ask why we need Birkhoff’s theorem at all, given that it does
not appear to add anything to our knowledge of majorization beyond what
we already know from Theorem 3.1.27 From a utilarian point of view, there
is some truth to this point of view. In the main text, all we will ever need
are the results of Theorem 3.1.2. Indeed, this utilarian view is why the proof
of Birkhoft’s theorem is in an appendix, and not the main text! Nonetheless,
from the point of view of deepening our understanding of why Theorem 3.1.2
is true, Birkhoff’s theorem serves a valuable purpose. Furthermore, the ideas
used in the proof of Birkhoff’s theorem are beautiful, useful, and stimulate
many other interesting questions and connections, both within the theory of
majorization, and in other areas of mathematics, making it worthwhile to
spend time in the study of the proof. In particular, in Chapter 3 Birkhoff’s
theorem will stimulate us to ask for an analogous quantum result, while
in Chapter 7 we will see how Birkhoft’s theorem enables us to make some
powerful statements about a concept related to majorization known as sub-
majorization.

Birkhoff’s theorem is not trivial to prove, and our route to the proof is
somewhat indirect. We begin with a combinatorial result known as Hall’s
theorem in Section A.1. In Section A.2 we use Hall’s theorem to prove an
analogous theorem about matrices, known as the Konig-Frobenius theorem.
Finally, in Section A.3 we prove Birkhoff’s theorem.

A.1 The marriage problem and Hall’s theo-
rem

To prove Birkhoft’s theorem we’re going to take a route through a problem in
combinatorics, known variously as the marriage problem or as the matching
problem. The marriage problem involves two equally sized and finite sets B
and G of “boys” and “girls” respectively, and a relation R on B x G. You
can think of this relation as representing the fact that boy b and girl g love
each other if R(b,g) is true, and don’t if it is false. (There is no unrequited
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love in the marriage problem.) The marriage problem is to determine when
it is possible to marry every boy to a single girl in such a way that no girl
has more than one husband, and so that each married boy and girl love one
another. Such a scheme, if it exists, is called a compatible matching for B x G
and R.

We are going to prove Hall’s theorem, which completely solves the mar-
riage problem. Perhaps surprisingly, Hall’s theorem also gives rise to a simple
proof of Birkhoft’s theorem.

Theorem A.1.1: ((Hall’s theorem))
There exists a compatible matching for B x G and R if and only
if each group of k boys loves at least k girls, for k =1,...,|B].

Proof: The forward implication is clear.

To prove the reverse implication, we induct on d = |B|. The case d = 1
is obvious, so we assume the result is true up to |B| = d, and try to prove it
for |B| = d+ 1. We split the analysis into two cases.

Case (a): There exists k such that 1 < k < d, and a group 3 of d boys
that loves a group of exactly d girls, 7. By the inductive hypothesis, § and
~ can be compatibly matched. We will use the inductive hypothesis to show
that the complementary sets ¢ and ¢ can also be compatibly matched,
and thus B can be compatibly matched with G. Let S be a subset of 3¢
containing A members. The set U S of k + h boys must love at least k + h
girs, and thus the boys in S must love at least h girls in 7. The inductive
hypothesis implies that 3¢ and v° can be compatibly matched.

Case (b): All groups of k boys (1 < k < d) love at least k+ 1 girls. Pick
any boy-girl pair and marry them off. Then the remaining d boys and d girls
satisfy the inductive hypothesis, and thus may be compatibly matched. ®

Exercise A.1.1: (Algorithm for the marriage problem) Directly check-
ing the conditions of Hall’s theorem requires that we check 2/7! subsets
of B, and thus is inefficient. Find an efficient algorithm to solve the
marriage problem, that is, an algorithm which requires a number of op-
erations polynomial in | B| to find a compatible matching, or to demon-
strate that no such matching exists.

Exercise A.1.2: (Generalized Hall’s theorem) Suppose B X G and R
specify a marriage problem. Fix a number s in the range 0 through n.
Show that a compatible matching exists if and only if every group of
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k < s boys loves at least k girls, and every group of k < |B| — s girls
loves at least k£ boys.

A.2 The Konig-Frobenius theorem

To apply Hall’s theorem to the study of doubly stochastic matrices, we first
need to translate it into a matrix form. One way of achieving this it the
Konig-Frobenius theorem. To state this theorem, we define a diagonal of a d
by d matrix A to be the vector (Airu), Aor(2); - -, Adr(a)), Where 7 is some
permutation of 1,...,d, and A is the (7, k)th element of A.

Theorem A.2.1: (Konig-Frobenius theorem)
There exists a diagonal of a d by d matrix A with no zero elements
if and only if every [ by m zero submatrix of A satisfies [+m < d.

Proof: 'The proof is a simple application of Hall’s theorem. We identify the
set of boys with the rows of A, and the girls with the columns of A. By
definition, boy j and girl k£ love one another if and only if A;;, # 0. With
these definitions, a potential matching corresponds to a diagonal of A, and
the matching is compatible if and only if there are no zero elements on that
diagonal. Note also that a [ by m zero submatrix corresponds to a group of
[ boys loving at most n — m girls.

Applying Hall’s theorem and these facts, there exists a diagonal of A with
no zero elements iff a compatible matching exists iff every group of [ boys
loves at least [ girls iff every [ by m — [ zero submatrix satisfies | < d — m,
that is, [+ m < d. ®

A.3 Birkhoff’s theorem

We now have the main technical ingredients needed to prove Birkhoft’s theo-
rem. Before stating Birkhoff’s theorem formally, it is helpful to note a couple
of other facts. First, it is not difficult to show that the set of doubly stochas-
tic matrices is convex, that is, convex combinations of doubly stochastic
matrices are also doubly stochastic. Second, the permutation matrices are
extreme points of the set of doubly stochastic matrices. This means that (a)
all permutation matrices are doubly stochastic, and (b) a permutation matrix
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can’t be written as a convex combination of two distinct doubly stochastic
matrices. Thus, a permutation matrix is “on the edge” of the convex set of
doubly stochastic matrices, which is why it is called an extreme point. The
proof of these facts is left as an exercise for the reader.

Exercise A.3.1: (Convexity of the doubly stochastic matrices) Show
that the set of d by d doubly stochastic matrices is convex.

Exercise A.3.2: Show that permutation matrices are extreme points of the
set of doubly stochastic matrices, that is, if P is a permutation matrix,
then it is a doubly stochastic matrix, but it is not a convex combination
of two distinct doubly stochastic matrices.

Theorem A.3.1: (Birkhoff’s theorem (Birkhoff 1946 [9]))
The set of d by d doubly stochastic matrices is a convex set whose
extreme points are the permutation matrices.

Proof: You have already demonstrated in the exercises that the permutation
matrices are extreme points of the convex set of doubly stochastic matrices.
What remains to be shown is that any doubly stochastic matrix D can be
written as a convex combination of permutation matrices,

We will prove this by induction on n(D), which is defined to be the num-
ber of non-zero elements in D. Note that d < n(D), since every column
must contain at least one non-zero entry. For the case n(D) = d, D must
have a single 1 in each row and column, and thus is a permutation matrix,
establishing the result for n(D) = d.

Next we do the inductive step. Let s(D) denote the sum of all elements
in D, which must be the sum of all the row sums, so double stochasticity
implies that s(D) = d. Suppose D has a [ by m zero sub-matrix. Then the
sum of all the elements in D must be greater than or equal to the sum of
the elements in the [ rows corresponding to the zero submatrix, plus the m
rows corresponding to the zero submatrix, since no non-zero element in D is
counted more than once in this sum. Thus [+m < d, so the Konig-Frobenius
theroem implies that there exists a diagonal of D with no non-zero elements.
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Let p be the smallest element on the diagonal, and P the permutation matrix
with ones on the diagonal. There are two cases to consider.
Case (a): p = 1. Then D must be a permutation matrix and we are

done.
Case (b): 0 < p < 1. Define

= A2
Q=22 (A2
Then D = (1—p)Q+pP. Clearly @ is doubly stochastic and n(Q) < n(D)—1.
By the inductive hypothesis

Q= ijPj (A.3)

for some set of probabilities p; and permutation matrices P;, from which it
follows that

D} (1-p)p;P; +pP, (A4)

so D is a convex combination of permutation matrices, as required.
As a simple example of Birkhoft’s theorem we can express a 2 by 2 doubly
stochastic matrix as a convex combination of permutations:

[1it1t_t]:tl(1) ﬂ+(1-t)“ H (A5)

More generally, Carathéodory’s theorem [51] guarantees that a point in an m-
dimensional compact convex set may be expressed as a convex combination
of at most m + 1 extremal points of that set. The d by d doubly stochastic
matrices form a d? — 2d 4 1-dimensional set, so an arbitrary doubly stochastic
matrix may be expressed as a convex combination of at most d? — 2d + 2
permutation matrices.

Exercise A.3.3: Find an algorithm which decomposes a d by d doubly
stochastic matrix into a convex combination of permutation matrices,
taking time no more than polynomial in d.

Exercise A.3.4: An m by n real matrix is said to be column stochastic if it
has non-negative entries and all the columns sum to one. A special class
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of column stochastic matrices is the deterministic matrices, which have
a single one in each column and are zero elsewhere. (The nomenclature
stems from the interpretation of the matrix as a noisy channel — a
deterministic matrix corresponds to a noisy channel whose action is
deterministic.) Prove that the set of m by n column stochastic matrices
is convex with extremal points the deterministic matrices.
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Appendix B

Generalized measurements and
quantum operations

This appendix has two closely related purposes. The first purpose is to de-
scribe an approach to quantum measurements that is more general than the
projective measurements taught in most introductory classes on quantum
mechanics. The second purpose is to describe the quantum operations for-
malism, a general formalism that can be used to describe a very large class of
quantum dynamics. The processes that can be described using quantum op-
erations include the unitary evolution and projective measurement processes
described in introductory courses. They also include generalized measure-
ments, as well as noise processes, like spontaneous emmission, that occur
when a quantum system is coupled to its environment in an uncontrolled
way. More detailed introductions to the theory of generalized measurements
and of quantum operations may be found in [43, 32, 18].

The appendix begins in Section B.1 with a discussion of the need for
generalized measurements. Section B.2 describes in detail an especially im-
portant class of generalized measurements known as ideal generalized mea-
surements. We conclude in Section B.3 with a discussion of the quantum
operations formalism. This formalism generalizes in a natural way the ear-
lier discussion of ideal generalized measurements. Also in Section B.3 we
explain how the quantum operations formalism provides a general approach
to both quantum measurements and quantum noise processes.
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B.1 The need for generalized measurements

There is a standard approach to quantum measurements taught as part of
most undergraduate classes on quantum mechanics. According to this ap-
proach, a quantum measurement is described by a set of operators P; acting
on the state space of the system being measured, with the subscript j in-
dexing the possible measurement outcomes. The only restrictions put on the
operators P; are that: (a) they should be projectors, that is, P; should be

j
Hermitian, with sz = P;; and (b) the P; should satisfy the completeness

7
relation }7; P; = I. If the quantum system is in the state |¢)) immediately

prior to the measurement, then the outcome j is obtained with probability

Pr(j) = (V|B;[¥), (B.1)
and the posterior state of the system after the measurement is
Bilv)

)= B.2
" v (WIE) .

Note that the completeness relation }°; P; = I ensures that the probabilities
Pr(j) sum to one, as we would expect.

Exercise B.1.1: Suppose the projectors P; describe a quantum measure-
ment process. Suppose we use that process to measure a quantum
state |psi), and then repeat the process again immediately after the
first measurement is complete. Show that the outcome of the second
measurement will, with probability one, be the same as the outcome of
the first measurement.

This description of quantum measurements works extremely well in many
situations. A standard textbook example is a Spin—% system, such as an
electron, with basis states | T) and | |) corresponding to spin up and spin
down in the z direction, respectively. Then a measurement of the spin in the
z direction is well described by the projectors Py = | T)(T |, Py =| |){l |.

Unfortunately, there are also many situations in which this formalism
does not describe the effect of a quantum measurement on a system. For
example, measuring the number of photons in a particular mode of an elec-
tromagnetic cavity usually involves coupling the cavity mode to modes of
the electromagnetic field external to the cavity, which in turn couple to a
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photodetector. This photodetector determines the number of photons in-
side the cavity by absorbing some of the energy transferred from the cavity
mode to the external modes. Thus, to function effectively, the entire process
must result in the photon number in the cavity decreasing. It turns out that
this process is not well-described as a projective measurement on the cavity
mode. One way of seeing this is to note that the procedure is obviously not
repeatable, in the sense of Exercise B.1, and thus cannot be described by a
projective measurement on the cavity mode.

Of course, we could describe the measurement as a projective measure-
ment on the combined system containing the cavity mode, the modes of the
electromagnetic field external to the cavity, and the photodetector. However,
if all we're interested in is the state of the cavity mode, that description seems
like overkill. The generalized measurement formalism, and more generally,
the quantum operations formalism, provides an elegant way of describing the
effect of the measurement on the cavity mode alone.

B.2 Ideal generalized measurements

We begin by introducing a particular type of generalized measurement, the
1deal generalized measurements. The theory of non-ideal generalized mea-
surements is easily understood once the ideal case has been mastered. For
this reason, when we refer to generalized measurements in this section, we
really mean ideal generalized measurements. Our approach is to begin by
explaining the mathematical formalism of (ideal) generalized measurements,
and then to explain how that formalism can be uderstood in terms of the
von Neumann projective measurements.

Mathematically, a generalized measurement is specified by a set {E;}
of measurement matrices satisfying the completeness relation 3, EJTE]- =1.
The index j on the measurement matrices is in one-to-one correspondence
with the possible measurement outcomes. The measurement matrices play a
role in the theory of generalized measurements analogous to the role played
by the projectors P; in the von Neumann formalism.

The rule used to connect the measurement matrices to physics is that if
the prior state of the quantum system is p then the outcome j occurs with
probability

Pr(j) = tr(E;pE]}), (B.3)
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and the posterior state is given by
" t(EjpE))

/

(B.4)

Projective measurements are obviously a special case of generalized measure-
ments, corresponding to the case when each of the measurement matrices
E; = P; is a projector: the completeness relation }:; E]TE]- = [ for mea-
surement matrices is equivalenet to the completeness relation >°; P; = I for
projectors.

However, generalized measurements also enable us to give simple descrip-
tions of measurements that are rather awkward to describe in standard quan-
tum mechanics. Consider, for example, a measurement on a single qubit
described by measurement matrices

B = ———0)0] (B.5)
1+ .,/1/2
1
Ey, = —————(0) +[1))({0] + (1; (B.6)
2,/1+4/1/2
By = \I-E|E, - EiB, (B.7)

where Fj is defined to be that positive matrix satisfying £ = I — EE, —
EQEQ; note that such a matrix exists because I — EIEl — E;Eg is itself a
positive matrix. Furthermore, note that the trhee

Th

Generalized measurements are obviously more general than the projec-
tive measurements described in most textbooks. Projective measurements
have the feature that they are repeatable, in the sense that if one performs
a projective measurement twice in a row on a quantum system, then one
will obtain the same result both times. By contrast, most real measure-
ments don’t have this feature of being repeatable, which tips us off to the
need for the formalism of generalized measurements. Nevertheless, even the
generalized measurement formalism can be understood in terms of projec-
tive measurements as follows: the effect of a generalized measurement on a
quantum system is equivalent to a unitary interaction between the system
being measured and another “ancilla” system, followed by a projective mea-
surement on the ancilla system. More precisely, suppose {E;} is a set of
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measurement matrices satisfying the completeness relation >, EZT E;,=1. We
introduce an ancilla system with orthonormal basis elements |i) indexed by
the possible measurement outcomes. Define a matrix U acting on the joint
quantum system-ancilla by the action:

Ul)0) = > Eily)li), (B.8)

where |0) is some standard state of the ancilla and |¢) is an arbitrary state
of the quantum system being measured. It is easy to show using the com-
pleteness relation >, E';r E; = I that U can be extended to a unitary ma-
trix acting on the entire state space of the joint system. Suppose we per-
form the unitary transformation U on the joint quantum system-ancilla,
and then do a projective measurement of the ancilla in the |i) basis. Tt
is then easily checked that the result of the measurement is ¢ with proba-
bility p; = tr(EZ-pE';r ) and the corresponding post-measurement state of the
system is p = E;pE] /tr(E;pE]). Thus, the effect on the quantum system is
exactly as we have described above for a generalized quantum measurement.
Conversely, it is not difficult to verify that the effect of a unitary interaction
between system and ancilla followed by a projective measurement on the an-
cilla can always be understood in terms of a generalized measurement (see
for example Chapter 8 of [43]).

This notion of “padding” vectors of unequal dimension so they can be
compared by the majorization relation is surprisingly useful, and we adopt
the general convention that when x and y are of different dimension then z <
y means that £ < y, where  and y are padded with extra zero components
to ensure that they have the same dimension. For example, (1/3,1/3,1/3) <
(1/2,1/2) since (1/3,1/3,1/3) < (1/2,1/2,0). It is easy to check that this
extended notion of majorization is well-defined, provided x and y both have
non-negative components, and this will be the case for all the applications in
this paper. Similarly, it is often useful to write x = y provided the padded
versions of z and y are equal, that is, the non-zero entries of z and y are
equal. With these conventions, it is easy to see that algebraic manipulations
proceed exactly as one would expect. For example, for non-negative real
vectors w, x,y, 2z if w < x,x = y,y < z then obviously w < z, even if all
four vectors have different dimensionality. We occasionally make use of such
elementary observations in proofs, without explicit comment.

The final result about majorization we shall need is that if P; are a set of
orthogonal projectors such that >, P, = I, and p is a density matrix, then
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A (Z HpB) < Ap). (B.9)

Intuitively, if a projective measurement of a quantum system is performed,
but we do not learn the result of the measurement, then the state of the
system after measurement is more mixed than it was before. One way of
proving this relation is via Horn’s lemma; a sketch follows. First, note that
it suffices to prove that A\(PpP + QpQ) < A(p), where P and Q = I — P
are two orthogonal projectors satisfying P + () = I. Once this is proved, the
general relation (B.9) follows by a simple induction. However, if we define a
unitary matrix U = P — @ then it is easy to verify that

p+ UpUT

PpP+QpQ =

(B.10)

Applying Horn’s lemma and the easily proved fact that if x; < y and x5 <y
then (x1 + x92)/2 < y, it follows with a little simple linear algebra that

APpP + QpQ) < Ap).

B.3 Quantum operations
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Appendix C

Classification of ensembles for a
density matrix

The density matrix is a tool used in quantum mechanics to deal with the case
where we only have incomplete knowledge of a quantum state. A detailed
discussion of the density matrix formalism may be found in most advanced
quantum mechanics textbooks, and we assume the reader is familiar with
the basic properties of the density matrix. Recall that if a quantum system
is in state [¢;) with probability p;, then the density matrix describing that
situation is defined to be

p= ij|¢j><¢j|- (C.1)

For example, a single qubit in the state |0) with probability 1/2 and state
(10) + |1))/+/2 with probability 1/2 may be described by the density matrix

ool + 1 <|o>j§|1>> <<owj§<1|> )

[i’ ” (C.3)

1
2
1
4

where we have written the matix with respect to the computational basis,
0), 1).

We call the collection {pj, |1;)} consisting of the probabilities p; and their
corresponding states [¢;) an ensemble, and we say that p = >=; p;|v;) (5] is
the density matrix generated by the ensemble {p;, [¢/;)}.

110



One of the most useful results about density matrices is the characteriza-
tion theorem guaranteeing that any ensemble {p;, |1;)} generates a density
matrix, p, that (a) has unit trace, tr(p) = 1, and (b) is a positive matrix, that
is, (¢|p|Y) > 0 for all |¢). Conversely, for any positive matrix p with unit
trace, there exists an ensemble {p;, |¢;)} generating p. This characterization
theorem thus justifies defining a matrix to be a density matrix precisely when
it is a positive matrix with unit trace.

Exercise C.0.1: The characterization theorem for density matrices often
includes the apparently supplementary condition that the density ma-
trix is Hermitian. Show that this condition is unnecessary by proving
that any positive matrix is automatically Hermitian.

Given a density matrix, p, that is, a positive matrix with unit trace, it
turns out that, in general, there are many different ensembles {p;, |1;) } gener-
ating p. The most commonly used ensemble is, of course, the eigenensemble:
letting A;(p) be the eigenvalues of p, and |j) the corresponding eigenvectors,
we have p = >, Aj(p)]j)(j|- The conditions that p be positive and have unit
trace imply that the \;(p) form a probability distribution. Thus {);(p), [J)}
is an ensemble generating p.

However, the eigenensemble may not be the only ensemble generating a
particular density matrix, as the following example shows. A qubit in the
state |0) with probability 3/4 and |1) with probability 1/4 has density matrix

3 1
= 210)(0] + 7I1)(1]. (C.4)

Suppose instead that we prepared the qubit in the state |a) or |b), with
respective probabilities 1/2, where |a) and |b) are defined by

¢10 %11 (C.5)
\/;I(J) - \/;|1>~ (C.6)

Direct calculation shows that the density matrix generated by this ensemble
is

|a)

1b)

1 1 3 1
= Sla)(al + 518} {b] = F10){0] + Z 1)1, (C.7)
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and thus is identical to the density matrix generated by the ensemble consid-
ered earlier, in which |0) is prepared with probability 3/4, and |1) is prepared
with probability 1/4.

What this example shows is that two (or perhaps more) different ensem-
bles of quantum states may give rise to the same density matrix. It is natural,
therefore, to try to characterize exactly which ensembles {p;, [1;)} give rise
to a particular density matrix, and we will now prove a theorem giving such
a characterization. Interestingly, this theorem has been independently dis-
covered several different times — I am aware of independent discoveried by
Schrodinger[54], by Jaynes[28], and by Hughston, Jozsa and Wootters[27];
there may well be others. Indeed, Schrodinger, in his 1936 paper[54], does
not even claim any particular priority for the result, presumably assuming
that the result was already known to others.

We prove the characterization theorem by first proving an intermediate
lemma which is just the desired characterization theorem in a simpler nota-
tion. To state and prove the lemma it helps to first introduce a little more
nomenclature. A set of (possibly un-normalized) vectors [¢;) generates the
operator p = >, [¢;)(¥;|. The lemma gives necessary and sufficient condi-
tions for two sets of vectors |1);) and |¢y) to generate the same matrix. The
connection with density matrices is then made by As a corollary we shall
characterize the set of ensembles consistent with a given density matrix.

K% Done up to here **#**

Lemma C.0.1: (Ensemble classification theorem) The sets
|4;) and |¢;) generate the same density matrix if and only if

i) = Zuij|¢j>7 (C.8)

where u;; is a unitary matrix of complex numbers, with indices ¢
and j, and we “pad” whichever set of vectors |¢;) or |¢;) contains
fewer elements with extra O vectors to ensure that the two sets
have the same number of elements.

As an immediate consequence of the theorem note that p = 3=, p;[1;) (¥;| =
ok Q| ok) (@x| for normalized quantum states |1;) and |¢y) if and only if

Vi) = ;ujkmm) (C.9)

112



for some unitary matrix v with entries u;;, and we pad the smaller ensemble
with entries having probability zero to ensure that the two ensembles have
the same number of elements. It is easily checked that our earlier example,
Equation (C.7), of a density matrix with two different ensemble decomposi-
tions, is a special case of this general result. Another useful consequence is
the following simple exercise, due to Jaynes|[28].

Exercise C.0.2: Let p be a density matrix and suppose |¢);) is some linearly
independent set of pure states spanning the support of p. Show that
there is a unique probability distribution (p;) such that p = 32, |y (¢,
given by

1
P o)

where p~! is defined to be the inverse of p on the support of p, and
otherwise is zero. (This removes the problem that p may not have an
inverse.)

(C.10)

The proof of Theorem C is a simple exercise in linear algebra:
Proof:  The reverse implication is trivial: we suppose [1;) = >; u]0;)
for some unitary w;; and then use straightforward algebra to show that
i [a) (W] = 325 |#5)(9;]. The converse is a trifle more difficult. Suppose

p= X el = X 1635, (C11)

and let |¢)) be any vector orthonormal to the space spanned by the |¢;), so
(]p;){(#;|¢) = 0 for all j and thus from (C.11) we see that

waz Y Wi|y) = waz . (C.12)

We deduce that (1|¢;) = 0 for all ¢ and all 1)) orthonormal to the space
spanned by the |¢;). It follows that each |1/;) may be expressed as a lin-
ear combination of the [¢;), [vs) = 3, ¢ij|¢;), for some matrix of complex
numbers ¢;;. Thus

Z [ZRCAEDS (Z Cz’j@%) |95) (@l (C.13)

jk N\ i
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from which we can see that >, ¢;;ci, = 0jx, so ¢ is unitary, as claimed. ®

Hints for Lecture C

Hint for Exercise C Show that any matrix M can be decomposed M =
A+1iB, where A and B are Hermitian. Then argue that if M is positive,
then B must be zero.
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