Riemann-Siegel formula: Difference between revisions
Created page with "'''Lemma 1''' For any complex number <math>z</math>, one has :<math> \int_{0 \uprightarrow 1} \frac{e^{i\pi u^2} + 2\pi i z u}}{e^{i\pi u} - e^{-i\pi u}}\ du = \frac{e^{i\pi z..." |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
'''Lemma 1''' For any complex number <math>z</math>, one has | '''Lemma 1''' For any complex number <math>z</math>, one has | ||
:<math> \int_{0 \ | :<math> \int_{0 \nearrow 1} \frac{e^{i\pi u^2 + 2\pi i z u}}{e^{i\pi u} - e^{-i\pi u}}\ du = \frac{e^{i\pi z} - e^{-i\pi z^2}}{e^{i \pi z} - e^{-i\pi z}}</math> | ||
where <math>0 \ | where <math>0 \nearrow 1</math> denotes a line passing through the line segment <math>[0,1]</math> oriented in the direction <math>e^{i\pi/4}</math>. | ||
'''Proof''' ... <math>\Box</math> | '''Proof''' Denote the left-hand side by <math>F(z)</math>. Observe that | ||
:<math>F(z) - F(z-1) = \int_{0 \nearrow 1} e^{i\pi u^2 + 2\pi i z u - i \pi u}\ du</math> | |||
:<math>= e^{-i \pi (z^2 - z + 1/4)} \int_{0 \nearrow 1} e^{i \pi (u + z-\frac{1}{2})^2}\ du</math> | |||
:<math>= e^{-i \pi (z^2 - z)}</math> | |||
while from the residue theorem one has | |||
:<math>F(z) = 1 + \int_{-1 \nearrow 0} \frac{e^{i\pi u^2 + 2\pi i z u}}{e^{i\pi u} - e^{-i\pi u}}\ du </math> | |||
:<math> = 1 + \int_{0 \nearrow 1} \frac{e^{i\pi (u-1)^2 + 2\pi i z (u-1)}}{e^{i\pi (u-1)} - e^{-i\pi (u-1)}}\ du </math> | |||
:<math> = 1 + e^{-2\pi i z} F(z-1).</math> | |||
The claim then follows from elementary algebra. | |||
<math>\Box</math> | |||
We can rearrange the above lemma as | We can rearrange the above lemma as | ||
:<math> \frac{e^{i\pi z}}{e^{i\pi z} -e^{-i\pi z}} = \int_{0 \ | :<math> \frac{e^{i\pi z}}{e^{i\pi z} -e^{-i\pi z}} = \int_{0 \nearrow 1} \frac{e^{i\pi u^2 + 2\pi i z u}}{e^{i\pi u} - e^{-i\pi u}}\ du + \frac{e^{-i\pi z^2}}{e^{i\pi z} - e^{-i\pi z}}.</math> | ||
Now let <math>s</math> be a complex number with <math>\mathrm{Re} s > 1</math>. Multiplying both sides of the above equation by <math>(1 + e^{-i\pi s) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) z^{s-1}<math> and integrating on the ray <math>\ | Now let <math>s</math> be a complex number with <math>\mathrm{Re} s > 1</math>. Multiplying both sides of the above equation by <math>(1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) z^{s-1}</math> and integrating on the ray <math>\nwarrow 0</math> from <math>0</math> in the direction <math>e^{3\pi i/4}</math>, we have | ||
:<math> A = B + C</math> | :<math> A = B + C</math> | ||
where | where | ||
:<math>A := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\ | :<math>A := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\nwarrow 0} \frac{z^{s-1} e^{i\pi z}}{e^{i\pi z} -e^{-i\pi z}}\ dz</math> | ||
:<math>B := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\ | :<math>B := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\nwarrow 0} \int_{0 \nearrow 1} \frac{e^{i\pi u^2 + 2\pi i z u} z^{s-1}}{e^{i\pi u} - e^{-i\pi u}}\ du dz</math> | ||
:<math>C := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\ | :<math>C := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\nwarrow 0} \frac{z^{s-1} e^{-i\pi z^2}}{e^{i\pi z} -e^{-i\pi z}}\ dz.</math> | ||
'''Lemma 2''' For any <math>u</math> to the right of the line <math>e^{i\pi/4} \R<math>, We have | '''Lemma 2''' For any <math>u</math> to the right of the line <math>e^{i\pi/4} {\bf R}</math>, We have | ||
:<math> (1 + e^{-i\pi s) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\ | :<math> (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\nwarrow 0} z^{s-1} e^{2\pi i z u}\ du = \pi^{-s/2} \Gamma(s/2) u^{-s}.</math> | ||
'''Proof''' . | '''Proof''' Using the duplication formula | ||
:<math> \Gamma(\frac{s}{2}) \Gamma(\frac{1+s}{2}) = 2^{1-s} \sqrt{\pi} \cos(\pi s/2)</math> | |||
and the reflection formula | |||
:<math> \Gamma(\frac{1-s}{2}) \Gamma(\frac{1+s}{2}) = \frac{\pi}{\cos(\pi s/2)}</math> | |||
one can rewrite the claim after some algebra as | |||
:<math>\int_{\nwarrow 0} z^{s-1} e^{2\pi i z u}\ du = e^{\pi i s/2} (2\pi )^{-s} \Gamma(s) u^{-s}.</math> | |||
But by making the change of variables <math>w = -2\pi i zu</math> and shifting contours we see that the left-hand side is | |||
:<math>(-2\pi i z)^{-s} \int_0^\infty w^{s-1} e^{-w}\ dw</math> | |||
and the claim follows from the definition of the Gamma function. <math>\Box</math> | |||
From this Lemma and Fubini (carefully verifying the absolute integrability) we have | From this Lemma and Fubini (carefully verifying the absolute integrability) we have | ||
:<math>B = \pi^{-s/2} \Gamma(s/2) \int_{0 \ | :<math>B = \pi^{-s/2} \Gamma(s/2) \int_{0 \nearrow 1} \frac{u^{-s} e^{i\pi u^2}}{e^{i\pi u} - e^{-i\pi u}}\ du.</math> | ||
Similarly, using the geometric series formula | Similarly, using the geometric series formula | ||
:<math> \frac{e^{i\pi z}}{e^{i\pi z}-e^{-i\pi z}} = -\sum_{n=1}^\infty e^{2\pi i n z}</math> | :<math> \frac{e^{i\pi z}}{e^{i\pi z}-e^{-i\pi z}} = -\sum_{n=1}^\infty e^{2\pi i n z}</math> | ||
and Fubini again one has | and Fubini again one has | ||
:<math>A = -\pi^{-s/2} \Gamma(s/2) \zeta(s).</math> | :<math>A = -\pi^{-s/2} \Gamma(s/2) \zeta(s).</math> | ||
Finally by reflecting the ray <math>\ | Finally by reflecting the ray <math>\nwarrow 0</math> around the origin and then shifting slightly to the right we have | ||
:<math>C = \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{0 \ | :<math>C = \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{0 \nwarrow 1} \frac{z^{s-1} e^{-i\pi z^2}}{e^{i\pi z} -e^{-i\pi z}}\ dz,</math> | ||
where <math>0 \ | where <math>0 \nwarrow 1</math> is a line in the direction <math>e^{3\pi i 4}</math> passing through <math>[0,1]</math>. By analytic continuation we conclude the Riemann-Siegel formula (see also equation (2.10.6) of [T1986]) | ||
:<math> \pi^{-s/2} \Gamma(s/2) \zeta(s) = - \pi^{-s/2} \Gamma(s/2) \int_{0 \ | :<math> \pi^{-s/2} \Gamma(s/2) \zeta(s) = - \pi^{-s/2} \Gamma(s/2) \int_{0 \nearrow 1} \frac{u^{-s} e^{i\pi u^2}}{e^{i\pi u} - e^{-i\pi u}}\ du - | ||
\pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{0 \ | \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{0 \nwarrow 1} \frac{z^{s-1} e^{-i\pi z^2}}{e^{-i\pi z} -e^{i\pi z}}\ dz.</math> | ||
From the residue theorem we can also write | |||
:<math>\int_{0 \nearrow 1} \frac{u^{-s} e^{i\pi u^2}}{e^{i\pi u} - e^{-i\pi u}}\ du =\sum_{n=1}^N \frac{1}{n^s} + \int_{N \nearrow N+1} \frac{u^{-s} e^{i\pi u^2}}{e^{i\pi u} - e^{-i\pi u}}\ du</math> | |||
for any natural number <math>N</math>; similarly | |||
:<math>\int_{0 \nwarrow 1} \frac{z^{s-1} e^{-i\pi z^2}}{e^{-i\pi z} -e^{i\pi z}}\ dz = \sum_{m=1}^M \frac{1}{m^{1-s}} + \int_{M \nwarrow M+1} \frac{z^{s-1} e^{-i\pi z^2}}{e^{-i\pi z} -e^{i\pi z}}\ dz.</math> |
Latest revision as of 13:49, 10 March 2018
Lemma 1 For any complex number [math]\displaystyle{ z }[/math], one has
- [math]\displaystyle{ \int_{0 \nearrow 1} \frac{e^{i\pi u^2 + 2\pi i z u}}{e^{i\pi u} - e^{-i\pi u}}\ du = \frac{e^{i\pi z} - e^{-i\pi z^2}}{e^{i \pi z} - e^{-i\pi z}} }[/math]
where [math]\displaystyle{ 0 \nearrow 1 }[/math] denotes a line passing through the line segment [math]\displaystyle{ [0,1] }[/math] oriented in the direction [math]\displaystyle{ e^{i\pi/4} }[/math].
Proof Denote the left-hand side by [math]\displaystyle{ F(z) }[/math]. Observe that
- [math]\displaystyle{ F(z) - F(z-1) = \int_{0 \nearrow 1} e^{i\pi u^2 + 2\pi i z u - i \pi u}\ du }[/math]
- [math]\displaystyle{ = e^{-i \pi (z^2 - z + 1/4)} \int_{0 \nearrow 1} e^{i \pi (u + z-\frac{1}{2})^2}\ du }[/math]
- [math]\displaystyle{ = e^{-i \pi (z^2 - z)} }[/math]
while from the residue theorem one has
- [math]\displaystyle{ F(z) = 1 + \int_{-1 \nearrow 0} \frac{e^{i\pi u^2 + 2\pi i z u}}{e^{i\pi u} - e^{-i\pi u}}\ du }[/math]
- [math]\displaystyle{ = 1 + \int_{0 \nearrow 1} \frac{e^{i\pi (u-1)^2 + 2\pi i z (u-1)}}{e^{i\pi (u-1)} - e^{-i\pi (u-1)}}\ du }[/math]
- [math]\displaystyle{ = 1 + e^{-2\pi i z} F(z-1). }[/math]
The claim then follows from elementary algebra. [math]\displaystyle{ \Box }[/math]
We can rearrange the above lemma as
- [math]\displaystyle{ \frac{e^{i\pi z}}{e^{i\pi z} -e^{-i\pi z}} = \int_{0 \nearrow 1} \frac{e^{i\pi u^2 + 2\pi i z u}}{e^{i\pi u} - e^{-i\pi u}}\ du + \frac{e^{-i\pi z^2}}{e^{i\pi z} - e^{-i\pi z}}. }[/math]
Now let [math]\displaystyle{ s }[/math] be a complex number with [math]\displaystyle{ \mathrm{Re} s \gt 1 }[/math]. Multiplying both sides of the above equation by [math]\displaystyle{ (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) z^{s-1} }[/math] and integrating on the ray [math]\displaystyle{ \nwarrow 0 }[/math] from [math]\displaystyle{ 0 }[/math] in the direction [math]\displaystyle{ e^{3\pi i/4} }[/math], we have
- [math]\displaystyle{ A = B + C }[/math]
where
- [math]\displaystyle{ A := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\nwarrow 0} \frac{z^{s-1} e^{i\pi z}}{e^{i\pi z} -e^{-i\pi z}}\ dz }[/math]
- [math]\displaystyle{ B := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\nwarrow 0} \int_{0 \nearrow 1} \frac{e^{i\pi u^2 + 2\pi i z u} z^{s-1}}{e^{i\pi u} - e^{-i\pi u}}\ du dz }[/math]
- [math]\displaystyle{ C := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\nwarrow 0} \frac{z^{s-1} e^{-i\pi z^2}}{e^{i\pi z} -e^{-i\pi z}}\ dz. }[/math]
Lemma 2 For any [math]\displaystyle{ u }[/math] to the right of the line [math]\displaystyle{ e^{i\pi/4} {\bf R} }[/math], We have
- [math]\displaystyle{ (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\nwarrow 0} z^{s-1} e^{2\pi i z u}\ du = \pi^{-s/2} \Gamma(s/2) u^{-s}. }[/math]
Proof Using the duplication formula
- [math]\displaystyle{ \Gamma(\frac{s}{2}) \Gamma(\frac{1+s}{2}) = 2^{1-s} \sqrt{\pi} \cos(\pi s/2) }[/math]
and the reflection formula
- [math]\displaystyle{ \Gamma(\frac{1-s}{2}) \Gamma(\frac{1+s}{2}) = \frac{\pi}{\cos(\pi s/2)} }[/math]
one can rewrite the claim after some algebra as
- [math]\displaystyle{ \int_{\nwarrow 0} z^{s-1} e^{2\pi i z u}\ du = e^{\pi i s/2} (2\pi )^{-s} \Gamma(s) u^{-s}. }[/math]
But by making the change of variables [math]\displaystyle{ w = -2\pi i zu }[/math] and shifting contours we see that the left-hand side is
- [math]\displaystyle{ (-2\pi i z)^{-s} \int_0^\infty w^{s-1} e^{-w}\ dw }[/math]
and the claim follows from the definition of the Gamma function. [math]\displaystyle{ \Box }[/math]
From this Lemma and Fubini (carefully verifying the absolute integrability) we have
- [math]\displaystyle{ B = \pi^{-s/2} \Gamma(s/2) \int_{0 \nearrow 1} \frac{u^{-s} e^{i\pi u^2}}{e^{i\pi u} - e^{-i\pi u}}\ du. }[/math]
Similarly, using the geometric series formula
- [math]\displaystyle{ \frac{e^{i\pi z}}{e^{i\pi z}-e^{-i\pi z}} = -\sum_{n=1}^\infty e^{2\pi i n z} }[/math]
and Fubini again one has
- [math]\displaystyle{ A = -\pi^{-s/2} \Gamma(s/2) \zeta(s). }[/math]
Finally by reflecting the ray [math]\displaystyle{ \nwarrow 0 }[/math] around the origin and then shifting slightly to the right we have
- [math]\displaystyle{ C = \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{0 \nwarrow 1} \frac{z^{s-1} e^{-i\pi z^2}}{e^{i\pi z} -e^{-i\pi z}}\ dz, }[/math]
where [math]\displaystyle{ 0 \nwarrow 1 }[/math] is a line in the direction [math]\displaystyle{ e^{3\pi i 4} }[/math] passing through [math]\displaystyle{ [0,1] }[/math]. By analytic continuation we conclude the Riemann-Siegel formula (see also equation (2.10.6) of [T1986])
- [math]\displaystyle{ \pi^{-s/2} \Gamma(s/2) \zeta(s) = - \pi^{-s/2} \Gamma(s/2) \int_{0 \nearrow 1} \frac{u^{-s} e^{i\pi u^2}}{e^{i\pi u} - e^{-i\pi u}}\ du - \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{0 \nwarrow 1} \frac{z^{s-1} e^{-i\pi z^2}}{e^{-i\pi z} -e^{i\pi z}}\ dz. }[/math]
From the residue theorem we can also write
- [math]\displaystyle{ \int_{0 \nearrow 1} \frac{u^{-s} e^{i\pi u^2}}{e^{i\pi u} - e^{-i\pi u}}\ du =\sum_{n=1}^N \frac{1}{n^s} + \int_{N \nearrow N+1} \frac{u^{-s} e^{i\pi u^2}}{e^{i\pi u} - e^{-i\pi u}}\ du }[/math]
for any natural number [math]\displaystyle{ N }[/math]; similarly
- [math]\displaystyle{ \int_{0 \nwarrow 1} \frac{z^{s-1} e^{-i\pi z^2}}{e^{-i\pi z} -e^{i\pi z}}\ dz = \sum_{m=1}^M \frac{1}{m^{1-s}} + \int_{M \nwarrow M+1} \frac{z^{s-1} e^{-i\pi z^2}}{e^{-i\pi z} -e^{i\pi z}}\ dz. }[/math]