De Bruijn-Newman constant: Difference between revisions
(18 intermediate revisions by the same user not shown) | |||
Line 35: | Line 35: | ||
where | where | ||
:<math>\displaystyle \xi(s) := \frac{s(s-1)}{2} \pi^{s/2} \Gamma(s/2) \zeta(s)</math> | :<math>\displaystyle \xi(s) := \frac{s(s-1)}{2} \pi^{-s/2} \Gamma(s/2) \zeta(s)</math> | ||
is the Riemann xi function. In particular, <math>z</math> is a zero of <math>H_0</math> if and only if <math>\frac{1}{2} + \frac{iz}{2}</math> is a non-trivial zero of the Riemann zeta function. Thus, for instance, the Riemann hypothesis is equivalent to all the zeroes of <math>H_0</math> being real, and [https://en.wikipedia.org/wiki/Riemann%E2%80%93von_Mangoldt_formula Riemann-von Mangoldt formula] (in the explicit form given by Backlund) gives | is the Riemann xi function. In particular, <math>z</math> is a zero of <math>H_0</math> if and only if <math>\frac{1}{2} + \frac{iz}{2}</math> is a non-trivial zero of the Riemann zeta function. Thus, for instance, the Riemann hypothesis is equivalent to all the zeroes of <math>H_0</math> being real, and [https://en.wikipedia.org/wiki/Riemann%E2%80%93von_Mangoldt_formula Riemann-von Mangoldt formula] (in the explicit form given by Backlund) gives | ||
:<math>\displaystyle N_0(T) - (\frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} - \frac{7}{8})| < 0.137 \log (T/2) + 0.443 \log\log(T/2) + 4.350 </math> | :<math>\displaystyle \left|N_0(T) - (\frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} - \frac{7}{8})\right| < 0.137 \log (T/2) + 0.443 \log\log(T/2) + 4.350 </math> | ||
for any <math>T > 4</math>, where <math>N_0(T)</math> denotes the number of zeroes of <math>H_0</math> with real part between 0 and T. | for any <math>T > 4</math>, where <math>N_0(T)</math> denotes the number of zeroes of <math>H_0</math> with real part between 0 and T. | ||
Line 50: | Line 50: | ||
It is known that <math>\xi</math> is an entire function of order one ([T1986, Theorem 2.12]). Hence by the fundamental solution for the heat equation, the <math>H_t</math> are also entire functions of order one for any <math>t</math>. | It is known that <math>\xi</math> is an entire function of order one ([T1986, Theorem 2.12]). Hence by the fundamental solution for the heat equation, the <math>H_t</math> are also entire functions of order one for any <math>t</math>. | ||
Because <math>\Phi</math> is positive, <math>H_t(iy)</math> is positive for any <math>y</math>, and hence there are no zeroes on the imaginary axis. | |||
Let <math>\sigma_{max}(t)</math> denote the largest imaginary part of a zero of <math>H_t</math>, thus <math>\sigma_{max}(t)=0</math> if and only if <math>t \geq \Lambda</math>. It is known that the quantity <math>\frac{1}{2} \sigma_{max}(t)^2 + t</math> is non-increasing in time whenever <math>\sigma_{max}(t)>0</math> (see [KKL2009, Proposition A]. In particular we have | Let <math>\sigma_{max}(t)</math> denote the largest imaginary part of a zero of <math>H_t</math>, thus <math>\sigma_{max}(t)=0</math> if and only if <math>t \geq \Lambda</math>. It is known that the quantity <math>\frac{1}{2} \sigma_{max}(t)^2 + t</math> is non-increasing in time whenever <math>\sigma_{max}(t)>0</math> (see [KKL2009, Proposition A]. In particular we have | ||
Line 88: | Line 90: | ||
* [https://terrytao.wordpress.com/2018/02/24/polymath15-fourth-thread-closing-in-on-the-test-problem/ Polymath 15, fourth thread: closing in on the test problem], Terence Tao, Feb 24, 2018. | * [https://terrytao.wordpress.com/2018/02/24/polymath15-fourth-thread-closing-in-on-the-test-problem/ Polymath 15, fourth thread: closing in on the test problem], Terence Tao, Feb 24, 2018. | ||
* [https://terrytao.wordpress.com/2018/03/02/polymath15-fifth-thread-finishing-off-the-test-problem/ Polymath15, fifth thread: finishing off the test problem?], Terence Tao, Mar 2, 2018. | * [https://terrytao.wordpress.com/2018/03/02/polymath15-fifth-thread-finishing-off-the-test-problem/ Polymath15, fifth thread: finishing off the test problem?], Terence Tao, Mar 2, 2018. | ||
* [https://terrytao.wordpress.com/2018/03/18/polymath15-sixth-thread-the-test-problem-and-beyond/ Polymath15, sixth thread: the test problem and beyond], Terence Tao, Mar 18, 2018. | |||
* [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/ Polymath15, seventh thread: going below 0.48], Terence Tao, Mar 28, 2018. | |||
* [https://terrytao.wordpress.com/2018/04/17/polymath15-eighth-thread-going-below-0-28/ Polymath15, eighth thread: going below 0.28], Terence Tao, Apr 17, 2018. | |||
* [https://terrytao.wordpress.com/2018/05/04/polymath15-ninth-thread-going-below-0-22/ Polymath15, ninth thread: going below 0.22?], Terence Tao, May 4, 2018. | |||
* [https://terrytao.wordpress.com/10725 Polymath15, tenth thread: numerics update], Rudolph Dwars and Kalpesh Muchhal, Sep 6, 2018. | |||
* [https://terrytao.wordpress.com/2018/12/28/polymath-15-eleventh-thread-writing-up-the-results-and-exploring-negative-t/ Polymath15, eleventh thread: Writing up the results, and exploring negative t], Terence Tao, Dec 28, 2018. | |||
* [https://terrytao.wordpress.com/2019/04/30/11075/ Effective approximation of heat flow evolution of the Riemann xi function, and a new upper bound for the de Bruijn-Newman constant], Terence Tao, Apr 30, 2019. | |||
== Other blog posts and online discussion == | == Other blog posts and online discussion == | ||
Line 99: | Line 108: | ||
* [https://github.com/km-git-acc/dbn_upper_bound Github repository] | * [https://github.com/km-git-acc/dbn_upper_bound Github repository] | ||
== Writeup == | |||
* [https://github.com/km-git-acc/dbn_upper_bound/tree/master/Writeup Writeup subdirectory of Github repository] | |||
Here are the [[Polymath15 grant acknowledgments]]. | |||
Polymath15 was able to establish the bound <math>\Lambda \leq 0.22</math>, but with the recent numerical verification of RH in https://arxiv.org/abs/2004.09765 this may be improved to <math>\Lambda \leq 0.20</math>. | |||
== Test problem == | == Test problem == | ||
See [[Polymath15 test problem]]. | See [[Polymath15 test problem]]. | ||
== Zero-free regions == | |||
See [[Zero-free regions]]. | |||
== Wikipedia and other references == | == Wikipedia and other references == | ||
Line 115: | Line 136: | ||
* [A2011] J. Arias de Reyna, [https://pdfs.semanticscholar.org/7964/fbdc0caeec0a41304deb8d2d8b2e2be639ee.pdf High-precision computation of Riemann's zeta function by the Riemann-Siegel asymptotic formula, I], Mathematics of Computation, Volume 80, Number 274, April 2011, Pages 995–1009. | * [A2011] J. Arias de Reyna, [https://pdfs.semanticscholar.org/7964/fbdc0caeec0a41304deb8d2d8b2e2be639ee.pdf High-precision computation of Riemann's zeta function by the Riemann-Siegel asymptotic formula, I], Mathematics of Computation, Volume 80, Number 274, April 2011, Pages 995–1009. | ||
* [B1994] W. G. C. Boyd, [http://www.jstor.org/stable/52450 Gamma Function Asymptotics by an Extension of the Method of Steepest Descents], Proceedings: Mathematical and Physical Sciences, Vol. 447, No. 1931 (Dec. 8, 1994),pp. 609-630. | * [B1994] W. G. C. Boyd, [http://www.jstor.org/stable/52450 Gamma Function Asymptotics by an Extension of the Method of Steepest Descents], Proceedings: Mathematical and Physical Sciences, Vol. 447, No. 1931 (Dec. 8, 1994),pp. 609-630. | ||
* [B1950] N. C. de Bruijn, The roots of trigonometric integrals, Duke J. Math. 17 (1950), 197–226. | * [B1950] N. C. de Bruijn, [https://pure.tue.nl/ws/files/1769368/597490.pdf The roots of trigonometric integrals], Duke J. Math. 17 (1950), 197–226. | ||
* [CSV1994] G. Csordas, W. Smith, R. S. Varga, [https://link.springer.com/article/10.1007/BF01205170 Lehmer pairs of zeros, the de Bruijn-Newman constant Λ, and the Riemann hypothesis], Constr. Approx. 10 (1994), no. 1, 107–129. | * [CSV1994] G. Csordas, W. Smith, R. S. Varga, [https://link.springer.com/article/10.1007/BF01205170 Lehmer pairs of zeros, the de Bruijn-Newman constant Λ, and the Riemann hypothesis], Constr. Approx. 10 (1994), no. 1, 107–129. | ||
* [G2004] Gourdon, Xavier (2004), [http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf The <math>10^{13}</math> first zeros of the Riemann Zeta function, and zeros computation at very large height] | * [G2004] Gourdon, Xavier (2004), [http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf The <math>10^{13}</math> first zeros of the Riemann Zeta function, and zeros computation at very large height] | ||
* [KKL2009] H. Ki, Y. O. Kim, and J. Lee, On the de Bruijn-Newman constant, Advances in Mathematics, 22 (2009), 281–306. [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.5595&rep=rep1&type=pdf Citeseer] | * [KKL2009] H. Ki, Y. O. Kim, and J. Lee, On the de Bruijn-Newman constant, Advances in Mathematics, 22 (2009), 281–306. [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.5595&rep=rep1&type=pdf Citeseer] | ||
* [N1976] C. M. Newman, Fourier transforms with only real zeroes, Proc. Amer. Math. Soc. 61 (1976), 246–251. | * [N1976] C. M. Newman, [http://www.ams.org/journals/proc/1976-061-02/S0002-9939-1976-0434982-5/S0002-9939-1976-0434982-5.pdf Fourier transforms with only real zeroes], Proc. Amer. Math. Soc. 61 (1976), 246–251. | ||
* [P2017] D. J. Platt, [http://www.ams.org/journals/mcom/2017-86-307/S0025-5718-2017-03198-7/ Isolating some non-trivial zeros of zeta], Math. Comp. 86 (2017), 2449-2467. | * [P2017] D. J. Platt, [http://www.ams.org/journals/mcom/2017-86-307/S0025-5718-2017-03198-7/ Isolating some non-trivial zeros of zeta], Math. Comp. 86 (2017), 2449-2467. | ||
* [P1992] G. Pugh, [https://web.viu.ca/pughg/thesis.d/masters.thesis.pdf The Riemann-Siegel formula and large scale computations of the Riemann zeta function], M.Sc. Thesis, U. British Columbia, 1992. | * [P1992] G. Pugh, [https://web.viu.ca/pughg/thesis.d/masters.thesis.pdf The Riemann-Siegel formula and large scale computations of the Riemann zeta function], M.Sc. Thesis, U. British Columbia, 1992. | ||
* [RT2018] B. Rodgers, T. Tao, The de Bruijn-Newman constant is non-negative, preprint. [https://arxiv.org/abs/1801.05914 arXiv:1801.05914] | * [RT2018] B. Rodgers, T. Tao, The de Bruijn-Newman constant is non-negative, preprint. [https://arxiv.org/abs/1801.05914 arXiv:1801.05914] | ||
* [T1986] E. C. Titchmarsh, The theory of the Riemann zeta-function. Second edition. Edited and with a preface by D. R. Heath-Brown. The Clarendon Press, Oxford University Press, New York, 1986. [http://plouffe.fr/simon/math/The%20Theory%20Of%20The%20Riemann%20Zeta-Function%20-Titshmarch.pdf pdf] | * [T1986] E. C. Titchmarsh, The theory of the Riemann zeta-function. Second edition. Edited and with a preface by D. R. Heath-Brown. The Clarendon Press, Oxford University Press, New York, 1986. [http://plouffe.fr/simon/math/The%20Theory%20Of%20The%20Riemann%20Zeta-Function%20-Titshmarch.pdf pdf] | ||
[[Category:Polymath15]] |
Latest revision as of 12:37, 22 April 2020
For each real number [math]\displaystyle{ t }[/math], define the entire function [math]\displaystyle{ H_t: {\mathbf C} \to {\mathbf C} }[/math] by the formula
- [math]\displaystyle{ \displaystyle H_t(z) := \int_0^\infty e^{tu^2} \Phi(u) \cos(zu)\ du }[/math]
where [math]\displaystyle{ \Phi }[/math] is the super-exponentially decaying function
- [math]\displaystyle{ \displaystyle \Phi(u) := \sum_{n=1}^\infty (2\pi^2 n^4 e^{9u} - 3 \pi n^2 e^{5u}) \exp(-\pi n^2 e^{4u}). }[/math]
It is known that [math]\displaystyle{ \Phi }[/math] is even, and that [math]\displaystyle{ H_t }[/math] is even, real on the real axis, and obeys the functional equation [math]\displaystyle{ H_t(\overline{z}) = \overline{H_t(z)} }[/math]. In particular, the zeroes of [math]\displaystyle{ H_t }[/math] are symmetric about both the real and imaginary axes. One can also express [math]\displaystyle{ H_t }[/math] in a number of different forms, such as
- [math]\displaystyle{ \displaystyle H_t(z) = \frac{1}{2} \int_{\bf R} e^{tu^2} \Phi(u) e^{izu}\ du }[/math]
or
- [math]\displaystyle{ \displaystyle H_t(z) = \frac{1}{2} \int_0^\infty e^{t\log^2 x} \Phi(\log x) e^{iz \log x}\ \frac{dx}{x}. }[/math]
In the notation of [KKL2009], one has
- [math]\displaystyle{ \displaystyle H_t(z) = \frac{1}{8} \Xi_{t/4}(z/2). }[/math]
De Bruijn [B1950] and Newman [N1976] showed that there existed a constant, the de Bruijn-Newman constant [math]\displaystyle{ \Lambda }[/math], such that [math]\displaystyle{ H_t }[/math] has all zeroes real precisely when [math]\displaystyle{ t \geq \Lambda }[/math]. The Riemann hypothesis is equivalent to the claim that [math]\displaystyle{ \Lambda \leq 0 }[/math]. Currently it is known that [math]\displaystyle{ 0 \leq \Lambda \lt 1/2 }[/math] (lower bound in [RT2018], upper bound in [KKL2009]).
The Polymath15 project seeks to improve the upper bound on [math]\displaystyle{ \Lambda }[/math]. The current strategy is to combine the following three ingredients:
- Numerical zero-free regions for [math]\displaystyle{ H_t(x+iy) }[/math] of the form [math]\displaystyle{ \{ x+iy: 0 \leq x \leq T; y \geq \varepsilon \} }[/math] for explicit [math]\displaystyle{ T, \varepsilon, t \gt 0 }[/math].
- Rigorous asymptotics that show that [math]\displaystyle{ H_t(x+iy) }[/math] whenever [math]\displaystyle{ y \geq \varepsilon }[/math] and [math]\displaystyle{ x \geq T }[/math] for a sufficiently large [math]\displaystyle{ T }[/math].
- Dynamics of zeroes results that control [math]\displaystyle{ \Lambda }[/math] in terms of the maximum imaginary part of a zero of [math]\displaystyle{ H_t }[/math].
[math]\displaystyle{ t=0 }[/math]
When [math]\displaystyle{ t=0 }[/math], one has
- [math]\displaystyle{ \displaystyle H_0(z) = \frac{1}{8} \xi( \frac{1}{2} + \frac{iz}{2} ) }[/math]
where
- [math]\displaystyle{ \displaystyle \xi(s) := \frac{s(s-1)}{2} \pi^{-s/2} \Gamma(s/2) \zeta(s) }[/math]
is the Riemann xi function. In particular, [math]\displaystyle{ z }[/math] is a zero of [math]\displaystyle{ H_0 }[/math] if and only if [math]\displaystyle{ \frac{1}{2} + \frac{iz}{2} }[/math] is a non-trivial zero of the Riemann zeta function. Thus, for instance, the Riemann hypothesis is equivalent to all the zeroes of [math]\displaystyle{ H_0 }[/math] being real, and Riemann-von Mangoldt formula (in the explicit form given by Backlund) gives
- [math]\displaystyle{ \displaystyle \left|N_0(T) - (\frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} - \frac{7}{8})\right| \lt 0.137 \log (T/2) + 0.443 \log\log(T/2) + 4.350 }[/math]
for any [math]\displaystyle{ T \gt 4 }[/math], where [math]\displaystyle{ N_0(T) }[/math] denotes the number of zeroes of [math]\displaystyle{ H_0 }[/math] with real part between 0 and T.
The first [math]\displaystyle{ 10^{13} }[/math] zeroes of [math]\displaystyle{ H_0 }[/math] (to the right of the origin) are real [G2004]. This numerical computation uses the Odlyzko-Schonhage algorithm. In [P2017] it was independently verified that all zeroes of [math]\displaystyle{ H_0 }[/math] between 0 and 61,220,092,000 were real.
[math]\displaystyle{ t\gt 0 }[/math]
For any [math]\displaystyle{ t\gt 0 }[/math], it is known that all but finitely many of the zeroes of [math]\displaystyle{ H_t }[/math] are real and simple [KKL2009, Theorem 1.3]. In fact, assuming the Riemann hypothesis, all of the zeroes of [math]\displaystyle{ H_t }[/math] are real and simple [CSV1994, Corollary 2].
It is known that [math]\displaystyle{ \xi }[/math] is an entire function of order one ([T1986, Theorem 2.12]). Hence by the fundamental solution for the heat equation, the [math]\displaystyle{ H_t }[/math] are also entire functions of order one for any [math]\displaystyle{ t }[/math].
Because [math]\displaystyle{ \Phi }[/math] is positive, [math]\displaystyle{ H_t(iy) }[/math] is positive for any [math]\displaystyle{ y }[/math], and hence there are no zeroes on the imaginary axis.
Let [math]\displaystyle{ \sigma_{max}(t) }[/math] denote the largest imaginary part of a zero of [math]\displaystyle{ H_t }[/math], thus [math]\displaystyle{ \sigma_{max}(t)=0 }[/math] if and only if [math]\displaystyle{ t \geq \Lambda }[/math]. It is known that the quantity [math]\displaystyle{ \frac{1}{2} \sigma_{max}(t)^2 + t }[/math] is non-increasing in time whenever [math]\displaystyle{ \sigma_{max}(t)\gt 0 }[/math] (see [KKL2009, Proposition A]. In particular we have
- [math]\displaystyle{ \displaystyle \Lambda \leq t + \frac{1}{2} \sigma_{max}(t)^2 }[/math]
for any [math]\displaystyle{ t }[/math].
The zeroes [math]\displaystyle{ z_j(t) }[/math] of [math]\displaystyle{ H_t }[/math] obey the system of ODE
- [math]\displaystyle{ \partial_t z_j(t) = - \sum_{k \neq j} \frac{2}{z_k(t) - z_j(t)} }[/math]
where the sum is interpreted in a principal value sense, and excluding those times in which [math]\displaystyle{ z_j(t) }[/math] is a repeated zero. See dynamics of zeros for more details. Writing [math]\displaystyle{ z_j(t) = x_j(t) + i y_j(t) }[/math], we can write the dynamics as
- [math]\displaystyle{ \partial_t x_j = - \sum_{k \neq j} \frac{2 (x_k - x_j)}{(x_k-x_j)^2 + (y_k-y_j)^2} }[/math]
- [math]\displaystyle{ \partial_t y_j = \sum_{k \neq j} \frac{2 (y_k - y_j)}{(x_k-x_j)^2 + (y_k-y_j)^2} }[/math]
where the dependence on [math]\displaystyle{ t }[/math] has been omitted for brevity.
In [KKL2009, Theorem 1.4], it is shown that for any fixed [math]\displaystyle{ t\gt 0 }[/math], the number [math]\displaystyle{ N_t(T) }[/math] of zeroes of [math]\displaystyle{ H_t }[/math] with real part between 0 and T obeys the asymptotic
- [math]\displaystyle{ N_t(T) = \frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} + \frac{t}{16} \log T + O(1) }[/math]
as [math]\displaystyle{ T \to \infty }[/math] (caution: the error term here is not uniform in t). Also, the zeroes behave like an arithmetic progression in the sense that
- [math]\displaystyle{ z_{k+1}(t) - z_k(t) = (1+o(1)) \frac{4\pi}{\log |z_k|(t)} = (1+o(1)) \frac{4\pi}{\log k} }[/math]
as [math]\displaystyle{ k \to +\infty }[/math].
See asymptotics of H_t for asymptotics of the function [math]\displaystyle{ H_t }[/math], and Effective bounds on H_t and Effective bounds on H_t - second approach for explicit bounds.
Threads
- Polymath proposal: upper bounding the de Bruijn-Newman constant, Terence Tao, Jan 24, 2018.
- Polymath15, first thread: computing H_t, asymptotics, and dynamics of zeroes, Terence Tao, Jan 27, 2018.
- Polymath15, second thread: generalising the Riemann-Siegel approximate functional equation, Terence Tao and Sujit Nair, Feb 2, 2018.
- Polymath15, third thread: computing and approximating H_t, Terence Tao and Sujit Nair, Feb 12, 2018.
- Polymath 15, fourth thread: closing in on the test problem, Terence Tao, Feb 24, 2018.
- Polymath15, fifth thread: finishing off the test problem?, Terence Tao, Mar 2, 2018.
- Polymath15, sixth thread: the test problem and beyond, Terence Tao, Mar 18, 2018.
- Polymath15, seventh thread: going below 0.48, Terence Tao, Mar 28, 2018.
- Polymath15, eighth thread: going below 0.28, Terence Tao, Apr 17, 2018.
- Polymath15, ninth thread: going below 0.22?, Terence Tao, May 4, 2018.
- Polymath15, tenth thread: numerics update, Rudolph Dwars and Kalpesh Muchhal, Sep 6, 2018.
- Polymath15, eleventh thread: Writing up the results, and exploring negative t, Terence Tao, Dec 28, 2018.
- Effective approximation of heat flow evolution of the Riemann xi function, and a new upper bound for the de Bruijn-Newman constant, Terence Tao, Apr 30, 2019.
Other blog posts and online discussion
- Heat flow and zeroes of polynomials, Terence Tao, Oct 17, 2017.
- The de Bruijn-Newman constant is non-negative, Terence Tao, Jan 19, 2018.
- Lehmer pairs and GUE, Terence Tao, Jan 20, 2018.
- A new polymath proposal (related to the Riemann hypothesis) over Tao's blog, Gil Kalai, Jan 26, 2018.
Code and data
Writeup
Here are the Polymath15 grant acknowledgments.
Polymath15 was able to establish the bound [math]\displaystyle{ \Lambda \leq 0.22 }[/math], but with the recent numerical verification of RH in https://arxiv.org/abs/2004.09765 this may be improved to [math]\displaystyle{ \Lambda \leq 0.20 }[/math].
Test problem
Zero-free regions
See Zero-free regions.
Wikipedia and other references
Bibliography
- [A2011] J. Arias de Reyna, High-precision computation of Riemann's zeta function by the Riemann-Siegel asymptotic formula, I, Mathematics of Computation, Volume 80, Number 274, April 2011, Pages 995–1009.
- [B1994] W. G. C. Boyd, Gamma Function Asymptotics by an Extension of the Method of Steepest Descents, Proceedings: Mathematical and Physical Sciences, Vol. 447, No. 1931 (Dec. 8, 1994),pp. 609-630.
- [B1950] N. C. de Bruijn, The roots of trigonometric integrals, Duke J. Math. 17 (1950), 197–226.
- [CSV1994] G. Csordas, W. Smith, R. S. Varga, Lehmer pairs of zeros, the de Bruijn-Newman constant Λ, and the Riemann hypothesis, Constr. Approx. 10 (1994), no. 1, 107–129.
- [G2004] Gourdon, Xavier (2004), The [math]\displaystyle{ 10^{13} }[/math] first zeros of the Riemann Zeta function, and zeros computation at very large height
- [KKL2009] H. Ki, Y. O. Kim, and J. Lee, On the de Bruijn-Newman constant, Advances in Mathematics, 22 (2009), 281–306. Citeseer
- [N1976] C. M. Newman, Fourier transforms with only real zeroes, Proc. Amer. Math. Soc. 61 (1976), 246–251.
- [P2017] D. J. Platt, Isolating some non-trivial zeros of zeta, Math. Comp. 86 (2017), 2449-2467.
- [P1992] G. Pugh, The Riemann-Siegel formula and large scale computations of the Riemann zeta function, M.Sc. Thesis, U. British Columbia, 1992.
- [RT2018] B. Rodgers, T. Tao, The de Bruijn-Newman constant is non-negative, preprint. arXiv:1801.05914
- [T1986] E. C. Titchmarsh, The theory of the Riemann zeta-function. Second edition. Edited and with a preface by D. R. Heath-Brown. The Clarendon Press, Oxford University Press, New York, 1986. pdf