De Bruijn-Newman constant: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
 
(13 intermediate revisions by the same user not shown)
Line 35: Line 35:
where
where


:<math>\displaystyle \xi(s) := \frac{s(s-1)}{2} \pi^{s/2} \Gamma(s/2) \zeta(s)</math>
:<math>\displaystyle \xi(s) := \frac{s(s-1)}{2} \pi^{-s/2} \Gamma(s/2) \zeta(s)</math>


is the Riemann xi function.  In particular, <math>z</math> is a zero of <math>H_0</math> if and only if <math>\frac{1}{2} + \frac{iz}{2}</math> is a non-trivial zero of the Riemann zeta function.  Thus, for instance, the Riemann hypothesis is equivalent to all the zeroes of <math>H_0</math> being real, and [https://en.wikipedia.org/wiki/Riemann%E2%80%93von_Mangoldt_formula Riemann-von Mangoldt formula] (in the explicit form given by Backlund) gives
is the Riemann xi function.  In particular, <math>z</math> is a zero of <math>H_0</math> if and only if <math>\frac{1}{2} + \frac{iz}{2}</math> is a non-trivial zero of the Riemann zeta function.  Thus, for instance, the Riemann hypothesis is equivalent to all the zeroes of <math>H_0</math> being real, and [https://en.wikipedia.org/wiki/Riemann%E2%80%93von_Mangoldt_formula Riemann-von Mangoldt formula] (in the explicit form given by Backlund) gives
Line 50: Line 50:


It is known that <math>\xi</math> is an entire function of order one ([T1986, Theorem 2.12]).  Hence by the fundamental solution for the heat equation, the <math>H_t</math> are also entire functions of order one for any <math>t</math>.
It is known that <math>\xi</math> is an entire function of order one ([T1986, Theorem 2.12]).  Hence by the fundamental solution for the heat equation, the <math>H_t</math> are also entire functions of order one for any <math>t</math>.
Because <math>\Phi</math> is positive, <math>H_t(iy)</math> is positive for any <math>y</math>, and hence there are no zeroes on the imaginary axis.


Let <math>\sigma_{max}(t)</math> denote the largest imaginary part of a zero of <math>H_t</math>, thus <math>\sigma_{max}(t)=0</math> if and only if <math>t \geq \Lambda</math>.  It is known that the quantity <math>\frac{1}{2} \sigma_{max}(t)^2 + t</math> is non-increasing in time whenever <math>\sigma_{max}(t)>0</math> (see [KKL2009, Proposition A].  In particular we have
Let <math>\sigma_{max}(t)</math> denote the largest imaginary part of a zero of <math>H_t</math>, thus <math>\sigma_{max}(t)=0</math> if and only if <math>t \geq \Lambda</math>.  It is known that the quantity <math>\frac{1}{2} \sigma_{max}(t)^2 + t</math> is non-increasing in time whenever <math>\sigma_{max}(t)>0</math> (see [KKL2009, Proposition A].  In particular we have
Line 89: Line 91:
* [https://terrytao.wordpress.com/2018/03/02/polymath15-fifth-thread-finishing-off-the-test-problem/ Polymath15, fifth thread: finishing off the test problem?], Terence Tao, Mar 2, 2018.
* [https://terrytao.wordpress.com/2018/03/02/polymath15-fifth-thread-finishing-off-the-test-problem/ Polymath15, fifth thread: finishing off the test problem?], Terence Tao, Mar 2, 2018.
* [https://terrytao.wordpress.com/2018/03/18/polymath15-sixth-thread-the-test-problem-and-beyond/ Polymath15, sixth thread: the test problem and beyond], Terence Tao, Mar 18, 2018.
* [https://terrytao.wordpress.com/2018/03/18/polymath15-sixth-thread-the-test-problem-and-beyond/ Polymath15, sixth thread: the test problem and beyond], Terence Tao, Mar 18, 2018.
* [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/ Polymath15, seventh thread: going below 0.48], Terence Tao, Mar 28, 2018.
* [https://terrytao.wordpress.com/2018/04/17/polymath15-eighth-thread-going-below-0-28/ Polymath15, eighth thread: going below 0.28], Terence Tao, Apr 17, 2018.
* [https://terrytao.wordpress.com/2018/05/04/polymath15-ninth-thread-going-below-0-22/ Polymath15, ninth thread: going below 0.22?], Terence Tao, May 4, 2018.
* [https://terrytao.wordpress.com/10725 Polymath15, tenth thread: numerics update], Rudolph Dwars and Kalpesh Muchhal, Sep 6, 2018.
* [https://terrytao.wordpress.com/2018/12/28/polymath-15-eleventh-thread-writing-up-the-results-and-exploring-negative-t/ Polymath15, eleventh thread: Writing up the results, and exploring negative t], Terence Tao, Dec 28, 2018.
* [https://terrytao.wordpress.com/2019/04/30/11075/ Effective approximation of heat flow evolution of the Riemann xi function, and a new upper bound for the de Bruijn-Newman constant], Terence Tao, Apr 30, 2019.


== Other blog posts and online discussion ==
== Other blog posts and online discussion ==
Line 104: Line 112:


* [https://github.com/km-git-acc/dbn_upper_bound/tree/master/Writeup Writeup subdirectory of Github repository]
* [https://github.com/km-git-acc/dbn_upper_bound/tree/master/Writeup Writeup subdirectory of Github repository]
Here are the [[Polymath15 grant acknowledgments]].
Polymath15 was able to establish the bound <math>\Lambda \leq 0.22</math>, but with the recent numerical verification of RH in https://arxiv.org/abs/2004.09765 this may be improved to <math>\Lambda \leq 0.20</math>.


== Test problem ==
== Test problem ==


See [[Polymath15 test problem]].
See [[Polymath15 test problem]].
== Zero-free regions ==
See [[Zero-free regions]].


== Wikipedia and other references ==
== Wikipedia and other references ==
Line 129: Line 145:
* [RT2018] B. Rodgers, T. Tao, The de Bruijn-Newman constant is non-negative, preprint. [https://arxiv.org/abs/1801.05914 arXiv:1801.05914]
* [RT2018] B. Rodgers, T. Tao, The de Bruijn-Newman constant is non-negative, preprint. [https://arxiv.org/abs/1801.05914 arXiv:1801.05914]
* [T1986] E. C. Titchmarsh, The theory of the Riemann zeta-function. Second edition. Edited and with a preface by D. R. Heath-Brown. The Clarendon Press, Oxford University Press, New York, 1986. [http://plouffe.fr/simon/math/The%20Theory%20Of%20The%20Riemann%20Zeta-Function%20-Titshmarch.pdf pdf]
* [T1986] E. C. Titchmarsh, The theory of the Riemann zeta-function. Second edition. Edited and with a preface by D. R. Heath-Brown. The Clarendon Press, Oxford University Press, New York, 1986. [http://plouffe.fr/simon/math/The%20Theory%20Of%20The%20Riemann%20Zeta-Function%20-Titshmarch.pdf pdf]
[[Category:Polymath15]]

Latest revision as of 12:37, 22 April 2020

For each real number [math]\displaystyle{ t }[/math], define the entire function [math]\displaystyle{ H_t: {\mathbf C} \to {\mathbf C} }[/math] by the formula

[math]\displaystyle{ \displaystyle H_t(z) := \int_0^\infty e^{tu^2} \Phi(u) \cos(zu)\ du }[/math]

where [math]\displaystyle{ \Phi }[/math] is the super-exponentially decaying function

[math]\displaystyle{ \displaystyle \Phi(u) := \sum_{n=1}^\infty (2\pi^2 n^4 e^{9u} - 3 \pi n^2 e^{5u}) \exp(-\pi n^2 e^{4u}). }[/math]

It is known that [math]\displaystyle{ \Phi }[/math] is even, and that [math]\displaystyle{ H_t }[/math] is even, real on the real axis, and obeys the functional equation [math]\displaystyle{ H_t(\overline{z}) = \overline{H_t(z)} }[/math]. In particular, the zeroes of [math]\displaystyle{ H_t }[/math] are symmetric about both the real and imaginary axes. One can also express [math]\displaystyle{ H_t }[/math] in a number of different forms, such as

[math]\displaystyle{ \displaystyle H_t(z) = \frac{1}{2} \int_{\bf R} e^{tu^2} \Phi(u) e^{izu}\ du }[/math]

or

[math]\displaystyle{ \displaystyle H_t(z) = \frac{1}{2} \int_0^\infty e^{t\log^2 x} \Phi(\log x) e^{iz \log x}\ \frac{dx}{x}. }[/math]

In the notation of [KKL2009], one has

[math]\displaystyle{ \displaystyle H_t(z) = \frac{1}{8} \Xi_{t/4}(z/2). }[/math]

De Bruijn [B1950] and Newman [N1976] showed that there existed a constant, the de Bruijn-Newman constant [math]\displaystyle{ \Lambda }[/math], such that [math]\displaystyle{ H_t }[/math] has all zeroes real precisely when [math]\displaystyle{ t \geq \Lambda }[/math]. The Riemann hypothesis is equivalent to the claim that [math]\displaystyle{ \Lambda \leq 0 }[/math]. Currently it is known that [math]\displaystyle{ 0 \leq \Lambda \lt 1/2 }[/math] (lower bound in [RT2018], upper bound in [KKL2009]).

The Polymath15 project seeks to improve the upper bound on [math]\displaystyle{ \Lambda }[/math]. The current strategy is to combine the following three ingredients:

  1. Numerical zero-free regions for [math]\displaystyle{ H_t(x+iy) }[/math] of the form [math]\displaystyle{ \{ x+iy: 0 \leq x \leq T; y \geq \varepsilon \} }[/math] for explicit [math]\displaystyle{ T, \varepsilon, t \gt 0 }[/math].
  2. Rigorous asymptotics that show that [math]\displaystyle{ H_t(x+iy) }[/math] whenever [math]\displaystyle{ y \geq \varepsilon }[/math] and [math]\displaystyle{ x \geq T }[/math] for a sufficiently large [math]\displaystyle{ T }[/math].
  3. Dynamics of zeroes results that control [math]\displaystyle{ \Lambda }[/math] in terms of the maximum imaginary part of a zero of [math]\displaystyle{ H_t }[/math].

[math]\displaystyle{ t=0 }[/math]

When [math]\displaystyle{ t=0 }[/math], one has

[math]\displaystyle{ \displaystyle H_0(z) = \frac{1}{8} \xi( \frac{1}{2} + \frac{iz}{2} ) }[/math]

where

[math]\displaystyle{ \displaystyle \xi(s) := \frac{s(s-1)}{2} \pi^{-s/2} \Gamma(s/2) \zeta(s) }[/math]

is the Riemann xi function. In particular, [math]\displaystyle{ z }[/math] is a zero of [math]\displaystyle{ H_0 }[/math] if and only if [math]\displaystyle{ \frac{1}{2} + \frac{iz}{2} }[/math] is a non-trivial zero of the Riemann zeta function. Thus, for instance, the Riemann hypothesis is equivalent to all the zeroes of [math]\displaystyle{ H_0 }[/math] being real, and Riemann-von Mangoldt formula (in the explicit form given by Backlund) gives

[math]\displaystyle{ \displaystyle \left|N_0(T) - (\frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} - \frac{7}{8})\right| \lt 0.137 \log (T/2) + 0.443 \log\log(T/2) + 4.350 }[/math]

for any [math]\displaystyle{ T \gt 4 }[/math], where [math]\displaystyle{ N_0(T) }[/math] denotes the number of zeroes of [math]\displaystyle{ H_0 }[/math] with real part between 0 and T.

The first [math]\displaystyle{ 10^{13} }[/math] zeroes of [math]\displaystyle{ H_0 }[/math] (to the right of the origin) are real [G2004]. This numerical computation uses the Odlyzko-Schonhage algorithm. In [P2017] it was independently verified that all zeroes of [math]\displaystyle{ H_0 }[/math] between 0 and 61,220,092,000 were real.

[math]\displaystyle{ t\gt 0 }[/math]

For any [math]\displaystyle{ t\gt 0 }[/math], it is known that all but finitely many of the zeroes of [math]\displaystyle{ H_t }[/math] are real and simple [KKL2009, Theorem 1.3]. In fact, assuming the Riemann hypothesis, all of the zeroes of [math]\displaystyle{ H_t }[/math] are real and simple [CSV1994, Corollary 2].

It is known that [math]\displaystyle{ \xi }[/math] is an entire function of order one ([T1986, Theorem 2.12]). Hence by the fundamental solution for the heat equation, the [math]\displaystyle{ H_t }[/math] are also entire functions of order one for any [math]\displaystyle{ t }[/math].

Because [math]\displaystyle{ \Phi }[/math] is positive, [math]\displaystyle{ H_t(iy) }[/math] is positive for any [math]\displaystyle{ y }[/math], and hence there are no zeroes on the imaginary axis.

Let [math]\displaystyle{ \sigma_{max}(t) }[/math] denote the largest imaginary part of a zero of [math]\displaystyle{ H_t }[/math], thus [math]\displaystyle{ \sigma_{max}(t)=0 }[/math] if and only if [math]\displaystyle{ t \geq \Lambda }[/math]. It is known that the quantity [math]\displaystyle{ \frac{1}{2} \sigma_{max}(t)^2 + t }[/math] is non-increasing in time whenever [math]\displaystyle{ \sigma_{max}(t)\gt 0 }[/math] (see [KKL2009, Proposition A]. In particular we have

[math]\displaystyle{ \displaystyle \Lambda \leq t + \frac{1}{2} \sigma_{max}(t)^2 }[/math]

for any [math]\displaystyle{ t }[/math].

The zeroes [math]\displaystyle{ z_j(t) }[/math] of [math]\displaystyle{ H_t }[/math] obey the system of ODE

[math]\displaystyle{ \partial_t z_j(t) = - \sum_{k \neq j} \frac{2}{z_k(t) - z_j(t)} }[/math]

where the sum is interpreted in a principal value sense, and excluding those times in which [math]\displaystyle{ z_j(t) }[/math] is a repeated zero. See dynamics of zeros for more details. Writing [math]\displaystyle{ z_j(t) = x_j(t) + i y_j(t) }[/math], we can write the dynamics as

[math]\displaystyle{ \partial_t x_j = - \sum_{k \neq j} \frac{2 (x_k - x_j)}{(x_k-x_j)^2 + (y_k-y_j)^2} }[/math]
[math]\displaystyle{ \partial_t y_j = \sum_{k \neq j} \frac{2 (y_k - y_j)}{(x_k-x_j)^2 + (y_k-y_j)^2} }[/math]

where the dependence on [math]\displaystyle{ t }[/math] has been omitted for brevity.

In [KKL2009, Theorem 1.4], it is shown that for any fixed [math]\displaystyle{ t\gt 0 }[/math], the number [math]\displaystyle{ N_t(T) }[/math] of zeroes of [math]\displaystyle{ H_t }[/math] with real part between 0 and T obeys the asymptotic

[math]\displaystyle{ N_t(T) = \frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} + \frac{t}{16} \log T + O(1) }[/math]

as [math]\displaystyle{ T \to \infty }[/math] (caution: the error term here is not uniform in t). Also, the zeroes behave like an arithmetic progression in the sense that

[math]\displaystyle{ z_{k+1}(t) - z_k(t) = (1+o(1)) \frac{4\pi}{\log |z_k|(t)} = (1+o(1)) \frac{4\pi}{\log k} }[/math]

as [math]\displaystyle{ k \to +\infty }[/math].

See asymptotics of H_t for asymptotics of the function [math]\displaystyle{ H_t }[/math], and Effective bounds on H_t and Effective bounds on H_t - second approach for explicit bounds.

Threads

Other blog posts and online discussion

Code and data

Writeup

Here are the Polymath15 grant acknowledgments.

Polymath15 was able to establish the bound [math]\displaystyle{ \Lambda \leq 0.22 }[/math], but with the recent numerical verification of RH in https://arxiv.org/abs/2004.09765 this may be improved to [math]\displaystyle{ \Lambda \leq 0.20 }[/math].

Test problem

See Polymath15 test problem.

Zero-free regions

See Zero-free regions.

Wikipedia and other references

Bibliography