Kakeya problem: Difference between revisions
No edit summary |
No edit summary |
||
(26 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
A '''Kakeya set''' in <math>{\mathbb F}_3^n</math> is a subset <math>E\subset{\mathbb F}_3^n</math> that contains an [[algebraic line]] in every direction; that is, for every <math>d\in{\mathbb F}_3^n</math>, there exists <math>e\in{\mathbb F}_3^n</math> such that <math>e,e+d,e+2d</math> all lie in <math>E</math>. Let <math>k_n</math> be the smallest size of a Kakeya set in <math>{\mathbb F}_3^n</math>. | |||
Clearly, we have <math>k_1=3</math>, and it is easy to see that <math>k_2=7</math>. Using a computer, it is not difficult to find that <math>k_3=13</math> and <math>k_4\le 27</math>. Indeed, it seems likely that <math>k_4=27</math> holds, meaning that in <math>{\mathbb F}_3^4</math> one cannot get away with just <math>26</math> elements. | |||
== Basic Estimates == | |||
Trivially, we have | |||
:<math>k_n\le k_{n+1}\le 3k_n</math>. | |||
Since the Cartesian product of two Kakeya sets is another Kakeya set, the upper bound can be extended to | |||
:<math>k_{n+m} \leq k_m k_n</math>; | |||
this implies that <math>k_n^{1/n}</math> converges to a limit as <math>n</math> goes to infinity. | |||
== Lower Bounds == | |||
To each of the <math>(3^n-1)/2</math> directions in <math>{\mathbb F}_3^n</math> there correspond at least three pairs of elements in a Kakeya set, determining this direction. Therefore, <math>\binom{k_n}{2}\ge 3\cdot(3^n-1)/2</math>, and hence | |||
:<math>k_n\ge 3^{(n+1)/2}.</math> | |||
One can derive essentially the same conclusion using the "bush" argument, as follows. Let <math>E\subset{\mathbb F}_3^n</math> be a Kakeya set, considered as a union of <math>N := (3^n-1)/2</math> lines in all different directions. Let <math>\mu</math> be the largest number of lines that are concurrent at a point of <math>E</math>. The number of point-line incidences is at most <math>|E|\mu</math> and at least <math>3N</math>, whence <math>|E|\ge 3N/\mu</math>. On the other hand, by considering only those points on the "bush" of lines emanating from a point with multiplicity <math>\mu</math>, we see that <math>|E|\ge 2\mu+1</math>. Comparing the two last bounds one obtains | |||
<math>|E|\gtrsim\sqrt{6N} \approx 3^{(n+1)/2}</math>. | |||
The | The better estimate | ||
:<math>k_n\ge (9/5)^n</math> | |||
is obtained in [http://arxiv.org/abs/0901.2529 a paper of Dvir, Kopparty, Saraf, and Sudan]. (In general, they show that a Kakeya set in the <math>n</math>-dimensional vector space over the <math>q</math>-element field has at least <math>(q/(2-1/q))^n</math> elements). | |||
A still better bound follows by using the "slices argument". Let <math>A,B,C\subset{\mathbb F}_3^{n-1}</math> be the three slices of a Kakeya set <math>E\subset{\mathbb F}_3^n</math>. Form a bipartite graph <math>G</math> with the partite sets <math>A</math> and <math>B</math> by connecting <math>a</math> and <math>b</math> by an edge if there is a line in <math>E</math> through <math>a</math> and <math>b</math>. The restricted sumset <math>\{a+b\colon (a,b)\in G\}</math> is contained in the set <math>-C</math>, while the difference set <math>\{a-b\colon (a,b)\in G\}</math> is all of <math>{\mathbb F}_3^{n-1}</math>. Using an estimate from [http://front.math.ucdavis.edu/math.CO/9906097 a paper of Katz-Tao], we conclude that <math>3^{n-1}\le\max(|A|,|B|,|C|)^{11/6}</math>, leading to <math>|E|\ge 3^{6(n-1)/11}</math>. Thus, | |||
:<math>k_n \ge 3^{6(n-1)/11}.</math> | |||
== Upper Bounds == | |||
We have | |||
:<math>k_n\le 2^{n+1}-1</math> | |||
since the set of all vectors in <math>{\mathbb F}_3^n</math> such that at least one of the numbers <math>1</math> and <math>2</math> is missing among their coordinates is a Kakeya set. | |||
This estimate can be improved using an idea due to Ruzsa (seems to be unpublished). Namely, let <math>E:=A\cup B</math>, where <math>A</math> is the set of all those vectors with <math>r/3+O(\sqrt r)</math> coordinates equal to <math>1</math> and the rest equal to <math>0</math>, and <math>B</math> is the set of all those vectors with <math>2r/3+O(\sqrt r)</math> coordinates equal to <math>2</math> and the rest equal to <math>0</math>. Then <math>E</math>, being of size just about <math>(27/4)^{r/3}</math> (which is not difficult to verify using [[Stirling's formula]]), contains lines in a positive proportion of directions: for, a typical direction <math>d\in {\mathbb F}_3^n</math> can be represented as <math>d=d_1+2d_2</math> with <math>d_1,d_2\in A</math>, and then <math>d_1,d_1+d,d_1+2d\in E</math>. Now one can use the random rotations trick to get the rest of the directions in <math>E</math> (losing a polynomial factor in <math>n</math>). | |||
Putting all this together, we seem to have | |||
:<math>(3^{6/11} + o(1))^n \le k_n \le ( (27/4)^{1/3} + o(1))^n</math> | |||
or | |||
:<math>(1.8207+o(1))^n \le k_n \le (1.8899+o(1))^n.</math> |
Latest revision as of 23:35, 4 June 2009
A Kakeya set in [math]\displaystyle{ {\mathbb F}_3^n }[/math] is a subset [math]\displaystyle{ E\subset{\mathbb F}_3^n }[/math] that contains an algebraic line in every direction; that is, for every [math]\displaystyle{ d\in{\mathbb F}_3^n }[/math], there exists [math]\displaystyle{ e\in{\mathbb F}_3^n }[/math] such that [math]\displaystyle{ e,e+d,e+2d }[/math] all lie in [math]\displaystyle{ E }[/math]. Let [math]\displaystyle{ k_n }[/math] be the smallest size of a Kakeya set in [math]\displaystyle{ {\mathbb F}_3^n }[/math].
Clearly, we have [math]\displaystyle{ k_1=3 }[/math], and it is easy to see that [math]\displaystyle{ k_2=7 }[/math]. Using a computer, it is not difficult to find that [math]\displaystyle{ k_3=13 }[/math] and [math]\displaystyle{ k_4\le 27 }[/math]. Indeed, it seems likely that [math]\displaystyle{ k_4=27 }[/math] holds, meaning that in [math]\displaystyle{ {\mathbb F}_3^4 }[/math] one cannot get away with just [math]\displaystyle{ 26 }[/math] elements.
Basic Estimates
Trivially, we have
- [math]\displaystyle{ k_n\le k_{n+1}\le 3k_n }[/math].
Since the Cartesian product of two Kakeya sets is another Kakeya set, the upper bound can be extended to
- [math]\displaystyle{ k_{n+m} \leq k_m k_n }[/math];
this implies that [math]\displaystyle{ k_n^{1/n} }[/math] converges to a limit as [math]\displaystyle{ n }[/math] goes to infinity.
Lower Bounds
To each of the [math]\displaystyle{ (3^n-1)/2 }[/math] directions in [math]\displaystyle{ {\mathbb F}_3^n }[/math] there correspond at least three pairs of elements in a Kakeya set, determining this direction. Therefore, [math]\displaystyle{ \binom{k_n}{2}\ge 3\cdot(3^n-1)/2 }[/math], and hence
- [math]\displaystyle{ k_n\ge 3^{(n+1)/2}. }[/math]
One can derive essentially the same conclusion using the "bush" argument, as follows. Let [math]\displaystyle{ E\subset{\mathbb F}_3^n }[/math] be a Kakeya set, considered as a union of [math]\displaystyle{ N := (3^n-1)/2 }[/math] lines in all different directions. Let [math]\displaystyle{ \mu }[/math] be the largest number of lines that are concurrent at a point of [math]\displaystyle{ E }[/math]. The number of point-line incidences is at most [math]\displaystyle{ |E|\mu }[/math] and at least [math]\displaystyle{ 3N }[/math], whence [math]\displaystyle{ |E|\ge 3N/\mu }[/math]. On the other hand, by considering only those points on the "bush" of lines emanating from a point with multiplicity [math]\displaystyle{ \mu }[/math], we see that [math]\displaystyle{ |E|\ge 2\mu+1 }[/math]. Comparing the two last bounds one obtains [math]\displaystyle{ |E|\gtrsim\sqrt{6N} \approx 3^{(n+1)/2} }[/math].
The better estimate
- [math]\displaystyle{ k_n\ge (9/5)^n }[/math]
is obtained in a paper of Dvir, Kopparty, Saraf, and Sudan. (In general, they show that a Kakeya set in the [math]\displaystyle{ n }[/math]-dimensional vector space over the [math]\displaystyle{ q }[/math]-element field has at least [math]\displaystyle{ (q/(2-1/q))^n }[/math] elements).
A still better bound follows by using the "slices argument". Let [math]\displaystyle{ A,B,C\subset{\mathbb F}_3^{n-1} }[/math] be the three slices of a Kakeya set [math]\displaystyle{ E\subset{\mathbb F}_3^n }[/math]. Form a bipartite graph [math]\displaystyle{ G }[/math] with the partite sets [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] by connecting [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math] by an edge if there is a line in [math]\displaystyle{ E }[/math] through [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math]. The restricted sumset [math]\displaystyle{ \{a+b\colon (a,b)\in G\} }[/math] is contained in the set [math]\displaystyle{ -C }[/math], while the difference set [math]\displaystyle{ \{a-b\colon (a,b)\in G\} }[/math] is all of [math]\displaystyle{ {\mathbb F}_3^{n-1} }[/math]. Using an estimate from a paper of Katz-Tao, we conclude that [math]\displaystyle{ 3^{n-1}\le\max(|A|,|B|,|C|)^{11/6} }[/math], leading to [math]\displaystyle{ |E|\ge 3^{6(n-1)/11} }[/math]. Thus,
- [math]\displaystyle{ k_n \ge 3^{6(n-1)/11}. }[/math]
Upper Bounds
We have
- [math]\displaystyle{ k_n\le 2^{n+1}-1 }[/math]
since the set of all vectors in [math]\displaystyle{ {\mathbb F}_3^n }[/math] such that at least one of the numbers [math]\displaystyle{ 1 }[/math] and [math]\displaystyle{ 2 }[/math] is missing among their coordinates is a Kakeya set.
This estimate can be improved using an idea due to Ruzsa (seems to be unpublished). Namely, let [math]\displaystyle{ E:=A\cup B }[/math], where [math]\displaystyle{ A }[/math] is the set of all those vectors with [math]\displaystyle{ r/3+O(\sqrt r) }[/math] coordinates equal to [math]\displaystyle{ 1 }[/math] and the rest equal to [math]\displaystyle{ 0 }[/math], and [math]\displaystyle{ B }[/math] is the set of all those vectors with [math]\displaystyle{ 2r/3+O(\sqrt r) }[/math] coordinates equal to [math]\displaystyle{ 2 }[/math] and the rest equal to [math]\displaystyle{ 0 }[/math]. Then [math]\displaystyle{ E }[/math], being of size just about [math]\displaystyle{ (27/4)^{r/3} }[/math] (which is not difficult to verify using Stirling's formula), contains lines in a positive proportion of directions: for, a typical direction [math]\displaystyle{ d\in {\mathbb F}_3^n }[/math] can be represented as [math]\displaystyle{ d=d_1+2d_2 }[/math] with [math]\displaystyle{ d_1,d_2\in A }[/math], and then [math]\displaystyle{ d_1,d_1+d,d_1+2d\in E }[/math]. Now one can use the random rotations trick to get the rest of the directions in [math]\displaystyle{ E }[/math] (losing a polynomial factor in [math]\displaystyle{ n }[/math]).
Putting all this together, we seem to have
- [math]\displaystyle{ (3^{6/11} + o(1))^n \le k_n \le ( (27/4)^{1/3} + o(1))^n }[/math]
or
- [math]\displaystyle{ (1.8207+o(1))^n \le k_n \le (1.8899+o(1))^n. }[/math]