T2(x) = -x: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
No edit summary
Alec (talk | contribs)
Sequence of length 614.
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
This sequence, of length <math>594</math>, satisfies <math>x_{2n} = -x_n</math> for all <math>n</math>:
This sequence, of length <math>614</math>, satisfies <math>x_{2n} = -x_n</math> for all <math>n</math>:
 
0+--+-++--+--+-++-++--+-++-++--+-++--+--+
-+--++--+-++--+-++++---+--+-++-++--+-++--
+--++-+--+-++-+--++--+-++-++--++-+-+---++
-+-+--++-++--++-+-++--+--+-++--+--+-++-++
--+++----+++--+-+--++--+-++--++++--+--+-+
+-++--+-++--+--+-++---++--++--++-+-++-+--
++--++-++-+----+++-+-++-+--+--++--++---++
-++--+-++--+--+-++-++--+++---++-+-++--+--
+++--+-+--+++-+-+--+-+--+++--++---+-++---
++++--++--+--+-++-+-+-+--+-++--+++--++--+
-++--+--+++---+--+-++++---+-++-++----++-+
++----++-++-+-++-+--+--++--+--+-+++--+++-
-+--+++----+++---++--++-+++-+--+---++--++
+-+-++---+++---+-++-+-++-+----++-+++--+--
++---++-++-++----++-++--+++---+--+-++--+-
 
Here's one of length <math>594</math>, the previous record:


  0+--+-++--+--+-++-++--+-++--+--+-++
  0+--+-++--+--+-++-++--+-++--+--+-++
Line 19: Line 37:
  -++++-+-+--+--++---++++--++--+-++-+
  -++++-+-+--+--++---++++--++--+-++-+


Here's one of length <math>584</math>, which held the record for about ten minutes:
Here's one of length <math>584</math>, the record before that:


  0+--+-++--++---++-+--+-++++-+--+-++---+-++--+
  0+--+-++--++---++-+--+-++++-+--+-++---+-++--+
Line 36: Line 54:


A more colourful display of this sequence can be found [http://thomas1111.wordpress.com/2010/01/10/a-sequence-of-584-elements-with-t2x-tx/ on this page].
A more colourful display of this sequence can be found [http://thomas1111.wordpress.com/2010/01/10/a-sequence-of-584-elements-with-t2x-tx/ on this page].
This sequence has various multiplicative properties that are not implied by the basic constraint. Writing <math>a=\pm b</math> to mean that the beginning of the a-sequence closely resembles the beginning of the b-sequence, we have the following relationships: 2=5=17, 3=-15, 7=-9, 11=-13. In addition, the 3-sequence starts pretty similarly to the 13-sequence, and consequently the 11-sequence starts pretty similarly to the 15-sequence.

Latest revision as of 12:38, 10 January 2010

This sequence, of length [math]\displaystyle{ 614 }[/math], satisfies [math]\displaystyle{ x_{2n} = -x_n }[/math] for all [math]\displaystyle{ n }[/math]:

0+--+-++--+--+-++-++--+-++-++--+-++--+--+
-+--++--+-++--+-++++---+--+-++-++--+-++--
+--++-+--+-++-+--++--+-++-++--++-+-+---++
-+-+--++-++--++-+-++--+--+-++--+--+-++-++
--+++----+++--+-+--++--+-++--++++--+--+-+
+-++--+-++--+--+-++---++--++--++-+-++-+--
++--++-++-+----+++-+-++-+--+--++--++---++
-++--+-++--+--+-++-++--+++---++-+-++--+--
+++--+-+--+++-+-+--+-+--+++--++---+-++---
++++--++--+--+-++-+-+-+--+-++--+++--++--+
-++--+--+++---+--+-++++---+-++-++----++-+
++----++-++-+-++-+--+--++--+--+-+++--+++-
-+--+++----+++---++--++-+++-+--+---++--++
+-+-++---+++---+-++-+-++-+----++-+++--+--
++---++-++-++----++-++--+++---+--+-++--+-

Here's one of length [math]\displaystyle{ 594 }[/math], the previous record:

0+--+-++--+--+-++-++--+-++--+--+-++
--+-++-+--++--+-++-++--+-++--+--+-+
+-++--+--+-++--++++--+--+-++-++----
+++-+--+-++--+--+-++-++--+-++-++--+
-++--+--+-++--+-++-++--+--+-++-+-+-
+--+++---+-++-++--+--+--+-++-+++-+-
---+-+++-++-+---+--+-++-++--+++---+
--+-+++-+--+-++-++--+-++--+--+-++-+
+----++-++--+-++--+--+-++-++--++-+-
++--+--+-++-++-+---+--+-++--++--++-
-++-++---+-++-+-++-++--+-++--+--+-+
+--+-++--+-++-++--+--+--+-+-++--++-
+-+-++--++-+-+--+--+-++--++++-+---+
-++-++--+-++--+--+++--+---++-+++--+
+-+---++-+-+--++--+++---++-+-++--+-
-+-++--++---++-++--+-+--+++-+-++---
-++++-+-+--+--++---++++--++--+-++-+

Here's one of length [math]\displaystyle{ 584 }[/math], the record before that:

0+--+-++--++---++-+--+-++++-+--+-++---+-++--+
+-+-+-+-++---+-++--++---++-+++---++-+--+++---
-++--+++-++---+--+-++++-+---+--+-++-++---++-+
++--+--+--+-+-++-+++----+++--+-++-+-+--+++-+-
+----++-+--+-+-+++-+-++-+-+---+-+--+++-+-+-+-
-++--+++-+---+++--++--+-++--+--+-+-++-+--++-+
-+--+++---+++---+++--++--++----+++-+---++-+-+
++--+---++-+--+++-+--++--++--+++--+-+--++--++
-++-+-+-+--+--++--+++--++---++---+-+++-++--+-
-++--++--+-+++--++--++-+--+-+-++---++-++---++
+----++-++-+-+-++--++-+-+--+-+--+-+--+-++-++-
++--+--+-+--++-++--++--++-+-++---+++--+--++-+
+---+++--+-+--+-+-++-+-+-++-+-+--+-+--+-++---

A more colourful display of this sequence can be found on this page.

This sequence has various multiplicative properties that are not implied by the basic constraint. Writing [math]\displaystyle{ a=\pm b }[/math] to mean that the beginning of the a-sequence closely resembles the beginning of the b-sequence, we have the following relationships: 2=5=17, 3=-15, 7=-9, 11=-13. In addition, the 3-sequence starts pretty similarly to the 13-sequence, and consequently the 11-sequence starts pretty similarly to the 15-sequence.