T m(x) = (+/-)T n(x): Difference between revisions
From Polymath Wiki
Jump to navigationJump to search
New page: This sequence, of length 688, satisfies the following relations exactly: <math>x_{2n} = -x_n</math> <math>x_{5n} = -x_n</math> <math>x_{13n} = -x_{11n}</math> 0+--+-++--+--+-++-++--+-... |
Mark Bennet (talk | contribs) No edit summary |
||
Line 30: | Line 30: | ||
+---++-+--+++---+-++-++--+--++ | +---++-+--+++---+-++-++--+--++ | ||
---++--+-++-+-+++----+++-+-++ | ---++--+-++-+-+++----+++-+-++ | ||
This also satisfies <math>x_{7n} = -x_{11n}</math> which is interesting because it was not an original constraint. | |||
The subsequences seem to group as follows (initial numbers are binary coded versions of the first part of each subsequence, the paired sequences are negatives of each other): | |||
617: 1 4 10 16 19 25 31 34 40 46 | |||
3478: 2 5 8 17 20 23 32 38 41 47 50 | |||
873: 7 13 22 28 33 37 42 49 52 | |||
3222: 11 14 21 26 29 35 39 44 | |||
1458: 3 12 30 48 | |||
2637: 6 15 24 43 51 | |||
1833: 18 27 45 | |||
2262: 9 36 |
Revision as of 22:29, 10 January 2010
This sequence, of length 688, satisfies the following relations exactly:
[math]\displaystyle{ x_{2n} = -x_n }[/math]
[math]\displaystyle{ x_{5n} = -x_n }[/math]
[math]\displaystyle{ x_{13n} = -x_{11n} }[/math]
0+--+-++--+--+-++-++--+-++-++- -+-++--+--+-++-++--+-++--+--+- ++-++--+-++-+---+-++--+--+-+++ -+--+-++--+--+-++-++--+-++-++- -+-++----++-++--+--+-++--++-++ +--++--+--+-++--+-++--++-+-+-+ +---+-++--++-+-++-+---+-++-++- -+-++--+-++-+---++-+-++--+--+- +--++--+-++-+++-+--+--+--+-+++ +---+-++--+--+-++-++---+++-+-- -++-+--+-++++---+-++--+--+-++- ++-++----++-++---+++--+--+++-- -++-+++--++--+-++-+----+++--++ -+-++---+-+-++-++--+-++--+--++ +--++--+-++-+---+--+-+++--+-+- ++-+--++--++---++-++--+-++--+- -++++--+--+-++-++--+-++--+---+ ++--+-++--+++---+-++-++--+-+-- -++-+-++--+--+-++-++--+-++-++- -+-++--+--+-+++----+-++--++++- +--+--++--+-++--++-+-+---++++- +---++-+--+++---+-++-++--+--++ ---++--+-++-+-+++----+++-+-++
This also satisfies [math]\displaystyle{ x_{7n} = -x_{11n} }[/math] which is interesting because it was not an original constraint.
The subsequences seem to group as follows (initial numbers are binary coded versions of the first part of each subsequence, the paired sequences are negatives of each other):
617: 1 4 10 16 19 25 31 34 40 46
3478: 2 5 8 17 20 23 32 38 41 47 50
873: 7 13 22 28 33 37 42 49 52
3222: 11 14 21 26 29 35 39 44
1458: 3 12 30 48
2637: 6 15 24 43 51
1833: 18 27 45
2262: 9 36