Multiplicative.c: Difference between revisions
From Polymath Wiki
Jump to navigationJump to search
No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<pre> | |||
/* --- The following code comes from C:\lcc\lib\wizard\textmode.tpl. */ | /* --- The following code comes from C:\lcc\lib\wizard\textmode.tpl. */ | ||
#include <stdio.h> | #include <stdio.h> | ||
Line 4: | Line 5: | ||
#include <string.h> | #include <string.h> | ||
#define SIZE | #define SIZE 400 // how many numbers the computer will look at; | ||
// in principle, increasing this number makes the computer smarter | // in principle, increasing this number makes the computer smarter | ||
Line 16: | Line 17: | ||
void exit_display(void); | void exit_display(void); | ||
int abs( int i ) | |||
{ | |||
if (i > 0) return i; | |||
else return -i; | |||
} | |||
int sgn(int i) | |||
{ | |||
if (i > 0) return +1; | |||
if (i < 0) return -1; | |||
return 0; | |||
} | |||
void init( void ) | void init( void ) | ||
Line 29: | Line 42: | ||
{ | { | ||
vals[i] = i; | vals[i] = i; | ||
for (j= | for (j=2; j<40; j++) | ||
{ | { | ||
while (vals[i] % (j*j) == 0) vals[i] /= j*j; | |||
} | } | ||
if (i % 2 == 0) | if (i % 2 == 0) | ||
Line 138: | Line 151: | ||
void deduce( void ) | void deduce( void ) // make simple deductions based on existing knowledge | ||
{ | { | ||
int i, j; | int i, j; | ||
Line 148: | Line 161: | ||
modified = 0; | modified = 0; | ||
// begin forward scan to update up,low | // begin forward scan to update up,low by deducing bounds on f[1,i] from f[1,i-1] | ||
for (i=1; i < SIZE; i++) | for (i=1; i < SIZE; i++) | ||
if (vals[i] == | if (abs(vals[i]) == 1) | ||
{ | { | ||
newup(i, up[i-1]+vals[i]); | newup(i, up[i-1]+vals[i]); | ||
newdown(i, low[i-1]+vals[i]); | newdown(i, low[i-1]+vals[i]); | ||
} | } | ||
else | |||
{ | |||
newup(i, up[i-1]+1); | |||
newdown(i, low[i-1]-1); | |||
} | |||
// begin backward scan to update up,low | // begin backward scan to update up,low by deducing bounds on f[1,i-1] from f[1,i] | ||
for (i=SIZE-1; i > 0; i--) | for (i=SIZE-1; i > 0; i--) | ||
if (vals[i] == | if (abs(vals[i]) == 1) | ||
{ | { | ||
newup(i-1, up[i] - vals[i]); | newup(i-1, up[i] - vals[i]); | ||
newdown(i-1, low[i] - vals[i]); | newdown(i-1, low[i] - vals[i]); | ||
} | } | ||
else | |||
{ | |||
newup(i-1, up[i] + 1); | |||
newdown(i-1, low[i] - 1); | |||
} | |||
// look for cuts | // look for cuts (though this is redundant from the previous two scans | ||
for (i=1; i < SIZE; i++) | for (i=1; i < SIZE; i++) | ||
Line 186: | Line 209: | ||
for (j=2; j*i<SIZE; j++) | for (j=2; j*i<SIZE; j++) | ||
{ | { | ||
if (vals[i] | if (abs(vals[i]) == 1) | ||
if (vals[j] | if (abs(vals[j]) == 1) | ||
if (vals[i*j] > | if (abs(vals[i*j]) > 1) | ||
{ | { | ||
printf("f(%d)=f(%d)f(%d)=%d... ", i*j,i,j,vals[i]*vals[j]); | printf("f(%d)=f(%d)f(%d)=%d... ", i*j,i,j,vals[i]*vals[j]); | ||
Line 194: | Line 217: | ||
} | } | ||
if (vals[i] | if (abs(vals[i])== 1) | ||
if (vals[i*j] | if (abs(vals[i*j]) == 1) | ||
if (vals[j] > | if (abs(vals[j]) > 1) | ||
{ | { | ||
printf("f(%d)=f(%d)/f(%d)=%d... ", j,i*j,j,vals[i*j]*vals[i]); | printf("f(%d)=f(%d)/f(%d)=%d... ", j,i*j,j,vals[i*j]*vals[i]); | ||
Line 238: | Line 261: | ||
void main() | void main(int argc, char *argv[]) | ||
{ | { | ||
int i, m; | |||
init(); | |||
for (i=1; i < argc; i++) | |||
{ | |||
m=0; | |||
sscanf(argv[i],"%d",&m); | |||
if (m==0) | |||
{ | |||
printf("Arguments must be numbers!\n"); | |||
exit(0); | |||
} | |||
set( abs(m), sgn(m) ); | |||
} | |||
deduce(); | deduce(); | ||
display(); | display(); | ||
} | } | ||
</pre> |
Latest revision as of 08:43, 2 February 2010
/* --- The following code comes from C:\lcc\lib\wizard\textmode.tpl. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #define SIZE 400 // how many numbers the computer will look at; // in principle, increasing this number makes the computer smarter // our knowledge is encoded in the following array int vals[SIZE+1]; // vals[i] = +a means f(i) = +f(a); vals[i] = -a means f(i) = -f(a). int up[SIZE+1]; // best known upper bound for f[1,n] int low[SIZE+1]; // best known lower bound for f[1,n] void deduce(void); void exit_display(void); int abs( int i ) { if (i > 0) return i; else return -i; } int sgn(int i) { if (i > 0) return +1; if (i < 0) return -1; return 0; } void init( void ) { int i; int j; vals[0] = 0; up[0] = 0; low[0] = 0; for (i=1; i <= SIZE; i++) { vals[i] = i; for (j=2; j<40; j++) { while (vals[i] % (j*j) == 0) vals[i] /= j*j; } if (i % 2 == 0) { up[i] = 2; low[i] = -2; } else { up[i] = 1; low[i] = -1; } } } int modified=0; void set( int p, int s ) // set f(p) = s { int i; int pred, sred; // need to reduce f(p)=s to f(pred)=sred if (vals[p] > 0) { pred = vals[p]; sred = s; } else { pred = -vals[p]; sred = -s; } if (vals[pred] == sred) return; if (vals[pred] == -sred) { printf("Contradiction! f(%d) = 1 and f(%d) = -1 (from f(%d)=%d)\n", pred, pred, p, s); exit_display(); } printf("Setting f(%d)=%d...\n",pred,sred); for (i=1; i<SIZE; i++) while (vals[i] % pred == 0) { vals[i] /= pred; vals[i] *= sred; } modified=1; } void newup( int i, int new) // add f[1,i] <= new to knowledge { if (up[i] <= new) return; // is redundant if (low[i] > new) { printf("Contradiction! %d <= f[1,%d] <= %d\n", low[i], i, new); exit_display(); } // printf(" (up[%d] = %d)", i, new); up[i] = new; modified = 1; } void newdown( int i, int new) // add f[1,i] >= new to knowledge { if (low[i] >= new) return; // is redundant if (up[i] < new) { printf("Contradiction! %d >= f[1,%d] >= %d\n", up[i], i, new); exit_display(); } // printf(" (low[%d] = %d)", i, new); low[i] = new; modified = 1; } void cut(int i) // we learn that f[1,i] = 0 { if (up[i] == 0 && low[i] == 0) return; if (up[i] < 0) { printf("Contradiction! f[1,%d]=-2 but f(%d)=f(%d+1)\n", i, i, i); exit_display(); } if (low[i] > 0) { printf("Contradiction! f[1,%d]=+2 but f(%d)=f(%d+1)\n", i, i, i); exit_display(); } // printf(" (cut[%d])", i); up[i]=0; low[i]=0; modified=1; } void deduce( void ) // make simple deductions based on existing knowledge { int i, j; do { printf("Deducing...\n"); modified = 0; // begin forward scan to update up,low by deducing bounds on f[1,i] from f[1,i-1] for (i=1; i < SIZE; i++) if (abs(vals[i]) == 1) { newup(i, up[i-1]+vals[i]); newdown(i, low[i-1]+vals[i]); } else { newup(i, up[i-1]+1); newdown(i, low[i-1]-1); } // begin backward scan to update up,low by deducing bounds on f[1,i-1] from f[1,i] for (i=SIZE-1; i > 0; i--) if (abs(vals[i]) == 1) { newup(i-1, up[i] - vals[i]); newdown(i-1, low[i] - vals[i]); } else { newup(i-1, up[i] + 1); newdown(i-1, low[i] - 1); } // look for cuts (though this is redundant from the previous two scans for (i=1; i < SIZE; i++) if (i % 2 == 1 && vals[i] == vals[i-1]) cut(i-1); // look for peaks and troughs for (i=1; i < SIZE-1; i++) { if (up[i] <= low[i-1]) set(i,-1); if (low[i] >= up[i-1]) set(i, 1); } // look for multiplicativity opportunities for (i=2; i <SIZE; i++) for (j=2; j*i<SIZE; j++) { if (abs(vals[i]) == 1) if (abs(vals[j]) == 1) if (abs(vals[i*j]) > 1) { printf("f(%d)=f(%d)f(%d)=%d... ", i*j,i,j,vals[i]*vals[j]); set(i*j, vals[i]*vals[j]); } if (abs(vals[i])== 1) if (abs(vals[i*j]) == 1) if (abs(vals[j]) > 1) { printf("f(%d)=f(%d)/f(%d)=%d... ", j,i*j,j,vals[i*j]*vals[i]); set(j, vals[i]*vals[i*j]); } } } while(modified); } void display( void ) { int i; printf("\n"); for (i=0; i < SIZE; i++) { if (up[i-1] == 0 && low[i-1] == 0) printf(" |"); else if (low[i-1] == 2) printf(" ^"); else if (up[i-1] == -2) printf(" v"); else printf(" "); printf(" %4d", vals[i]); if (i % 10 == 9) printf(" [%d-%d]\n", i-9,i); } printf("\n"); } void exit_display(void) { display(); exit(1); } void main(int argc, char *argv[]) { int i, m; init(); for (i=1; i < argc; i++) { m=0; sscanf(argv[i],"%d",&m); if (m==0) { printf("Arguments must be numbers!\n"); exit(0); } set( abs(m), sgn(m) ); } deduce(); display(); }