Pseudointegers: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
SuneJ (talk | contribs)
No edit summary
SuneJ (talk | contribs)
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 26: Line 26:
2: If <math>a/b>log_x(y)</math>, a/b can't be in the set we take sup of. So <math>x^a> y^b</math>.
2: If <math>a/b>log_x(y)</math>, a/b can't be in the set we take sup of. So <math>x^a> y^b</math>.


3: For <math>y=(0,0,\dots)</math> we have <math>\log_x(y)=0</math> and the theorem is true, so we may assume <math>y\neq (0,0,\dots)</math>. If <math>a/b\ log_x(y)</math> we can find c and d so that <math>a/b<c/d</math> and <math>x^c\leq y^d</math>. Now we have <math>(x^a)^{bc}=x^{abc}\leq y^{abd}=(y^b)^{ad}</math> and using <math>ad<bd</math> and that the power function is increasing for <math>y\neq (0,0,\dots)</math> (see the proof of 1) we get <math>x^a<y^b</math>
3: For <math>y=(0,0,\dots)</math> we have <math>\log_x(y)=0</math> and the theorem is true, so we may assume <math>y\neq (0,0,\dots)</math>. If <math>a/b <\log_x(y)</math> we can find c and d so that <math>a/b<c/d</math> and <math>x^c\leq y^d</math>. Now we have <math>(x^a)^{bc}=x^{abc}\leq y^{abd}=(y^b)^{ad}</math> and using <math>ad<bd</math> and that the power function is increasing for <math>y\neq (0,0,\dots)</math> (see the proof of 1) we get <math>x^a<y^b</math>


4: If <math>\log_x(y)\leq 0</math> (2) tells us that <math>x^1>y^n</math> for all n. But that we have a infinite bounded sequence which contradicts an axiom of the ordering on the pseudointegers. If <math>\log_x(y)=\infty</math> (3) tells us that <math>x^n<y^1</math> for all n. Again we get a contradiction.
4: If <math>\log_x(y)\leq 0</math> (2) tells us that <math>x^1>y^n</math> for all n. But that we have a infinite bounded sequence which contradicts an axiom of the ordering on the pseudointegers. If <math>\log_x(y)=\infty</math> (3) tells us that <math>x^n<y^1</math> for all n. Again we get a contradiction.
Line 68: Line 68:


(notice that log are taken on numbers in (0,1) so they are negative) where <math>log</math> is the usual logarithm on the reals. Similarly we get <math>\frac{a}{b}<\log_x(y)\Rightarrow \frac{a}{b}\leq \frac{\log(d_y)}{\log(d_x)}</math>. This tells us that <math>\log_x(y)=\frac{\log(d_y)}{\log(d_x)}</math>. From this we get that <math>-\log(d_x)\log_x(z)=-\log(d_x)\log_y(z)\log_x(y)=-\log(d_y)\log_y(z)</math>, so the function <math>\log: X\to \mathbb{R}</math> defined by <math>\log(z)=-\log(d_x)\log_x(z)</math> for some <math>x\in X</math> where <math>d_x</math> exists and <math>d_x\in (0,1)</math>, doesn't depend on the x we choose. From this function we define <math>\varphi(z)=e^{\log(z)}</math>. If <math>d_z</math> exists (again, it would be nice to find a proof that it does or to prove that it does have to) we know that <math>\varphi(z)=e^{\log(z)}=e^{-\log(d_z)\log_z(z)}=(e^{\log(d_z)})^{-1}=\frac{1}{d_z}</math>.
(notice that log are taken on numbers in (0,1) so they are negative) where <math>log</math> is the usual logarithm on the reals. Similarly we get <math>\frac{a}{b}<\log_x(y)\Rightarrow \frac{a}{b}\leq \frac{\log(d_y)}{\log(d_x)}</math>. This tells us that <math>\log_x(y)=\frac{\log(d_y)}{\log(d_x)}</math>. From this we get that <math>-\log(d_x)\log_x(z)=-\log(d_x)\log_y(z)\log_x(y)=-\log(d_y)\log_y(z)</math>, so the function <math>\log: X\to \mathbb{R}</math> defined by <math>\log(z)=-\log(d_x)\log_x(z)</math> for some <math>x\in X</math> where <math>d_x</math> exists and <math>d_x\in (0,1)</math>, doesn't depend on the x we choose. From this function we define <math>\varphi(z)=e^{\log(z)}</math>. If <math>d_z</math> exists (again, it would be nice to find a proof that it does or to prove that it does have to) we know that <math>\varphi(z)=e^{\log(z)}=e^{-\log(d_z)\log_z(z)}=(e^{\log(d_z)})^{-1}=\frac{1}{d_z}</math>.
==Density of the set of pseudointegers==


If there exists a <math>x\in X: d_x\in (0,1)</math>, we define
If there exists a <math>x\in X: d_x\in (0,1)</math>, we define
Line 73: Line 75:
<math>d=\lim_{n\to\infty}\frac{|\varphi(X)\cap (0,n]|}{n}</math>
<math>d=\lim_{n\to\infty}\frac{|\varphi(X)\cap (0,n]|}{n}</math>


if the limit exist. This limit can be greater than 1 and for the integers it is 1. This means that looking only at the structure of X, we can "see if there is to many pseudointegers" compared to the integers.
if the limit exist. This limit can be greater than 1 and for the integers it is 1. This means that looking only at the structure of X, we can "see if there is too few/many pseudointegers" compared to the integers.
 
''Here I would like to have a proof that d exists under some assumptions. Using the next paragraph this would imply that <math>d_x</math> exists for all <math>x\in X</math>. I don't think it is enough to assume that <math>d_x\in (0,1)</math> for one x, but it might be enough to assume that <math>d_x,d_y \in (0,1)</math> for some x,y such that <math>\log_x(y)</math> is irrational.''
 
==From <math>d</math> to <math>d_x</math>==
 
Let <math>\varphi: X \to\mathbb{R}</math> be any function such that <math>\varphi(x)\varphi(y)=\varphi(xy)</math> and <math>x\leq y \Rightarrow \varphi(x)\leq \varphi(y)</math>, and such that the density
 
<math>d=\lim_{n\to\infty}\frac{|\varphi(X)\cap (0,n]|}{n}</math>
 
exists and <math>d\in (0,\infty)</math> (in particular this implies that <math>\lim_{n\to\infty}\varphi(n_p)=\infty</math>). We can now find <math>d_x</math>:
 
<math>d_x=\lim_{n\to\infty}\frac{|\{z\in X|xz\leq n_p\}|}{n}=\lim_{n\to\infty}\frac{|\{z\in X|\varphi(x)\varphi(z)\leq \varphi(n_p)\}|}{|\{z\in X|\varphi(z)\leq \varphi(n_p)\}|}=\lim_{n\to\infty}\frac{|\varphi(X)\cap (0,\frac{\varphi(n_p)}{\varphi(x)}]|}{\varphi(n_p)}\frac{\varphi(n_p)}{|\varphi(X)\cap (0,\varphi(n_p)]|}=\frac{1}{\varphi(x)}.</math>
 
Notice that in general we don't have <math>\{z\in X|xz\leq n_p\}=\{z\in X|\varphi(x)\varphi(z)\leq \varphi(n_p)\}</math> but <math>\{z\in X|\varphi(x)\varphi(z)< \varphi(n_p)\}\subset\{z\in X|xz\leq n_p\}\subset\{z\in X|\varphi(x)\varphi(z)\leq \varphi(n_p)\}</math>. The above works because we are taking limits.

Latest revision as of 00:17, 23 February 2010

We have been considering more than one type of "pseudointegers", but here is the most general I think is useful in the EDP (I think we should create another article about EDP on pseudointegers):

A set of pseudointegers is the set [math]\displaystyle{ X=l_0(\mathbb{N}_0) }[/math] of sequences over the non-negative integers that are 0 from some point, with a total ordering that fulfills:

  • [math]\displaystyle{ a\geq b, c\geq d \Rightarrow ac\geq bd }[/math] and
  • [math]\displaystyle{ \forall a\in X: |\{b\in X|b\lt a\}|\lt \infty }[/math]

Here multiplication is defined by termwise addition: [math]\displaystyle{ ab=(a_1,a_2,\dots)(b_1,b_2,\dots)=(a_1+b_1,a_2+b_2) }[/math]. For simplicity we furthermore assume that [math]\displaystyle{ p_1=(1,0,0,\dots)\lt p_2=(0,1,0,\dots)\lt ... }[/math] is an increasing sequence. These pseudointegers are called (pseudo)primes.

Logarithm and [math]\displaystyle{ \varphi }[/math]

We would like to find a function [math]\displaystyle{ \varphi: X\to \mathbb{R} }[/math] that preserves multiplication and order. In general, this function will not be injective. Look at a fixed element [math]\displaystyle{ x\in X, x\neq (0,0,0,\dots) }[/math]. We now define the logarithm in base x by [math]\displaystyle{ \log_x(y)=\sup\{a/b|a\in\mathbb{N}_0,b\in \mathbb{N},x^a\leq y^b\}. }[/math] This function fulfills some basis formulas

  1. [math]\displaystyle{ \log_x(x)=1 }[/math]
  2. [math]\displaystyle{ a/b\gt log_x(y)\Rightarrow x^a\gt y^b }[/math]
  3. [math]\displaystyle{ a/b\lt log_x(y)\Rightarrow x^a\lt y^b }[/math]
  4. [math]\displaystyle{ \forall y\in X\setminus \{(0,0,\dots)\}: \log_x(y)\in (0,\infty) }[/math]
  5. [math]\displaystyle{ \log_x(yz)=\log_x(y)+\log_x(z) }[/math]
  6. [math]\displaystyle{ y\leq z \Rightarrow\log_x(y)\leq \log_x(z) }[/math]
  7. [math]\displaystyle{ \log_x(z)=\log_y(z)\log_x(y) }[/math]

Proof: 1: We have [math]\displaystyle{ x^1\leq x^1 }[/math], so [math]\displaystyle{ \log_x(x)\geq 1/1=1 }[/math]. If [math]\displaystyle{ a\gt b }[/math] then [math]\displaystyle{ x^a\gt x^b }[/math], since otherwise [math]\displaystyle{ x^{b+n(a-b)} }[/math] would be an infinite decreasing sequence. This shows [math]\displaystyle{ \log_x(x)\leq 1 }[/math].

2: If [math]\displaystyle{ a/b\gt log_x(y) }[/math], a/b can't be in the set we take sup of. So [math]\displaystyle{ x^a\gt y^b }[/math].

3: For [math]\displaystyle{ y=(0,0,\dots) }[/math] we have [math]\displaystyle{ \log_x(y)=0 }[/math] and the theorem is true, so we may assume [math]\displaystyle{ y\neq (0,0,\dots) }[/math]. If [math]\displaystyle{ a/b \lt \log_x(y) }[/math] we can find c and d so that [math]\displaystyle{ a/b\lt c/d }[/math] and [math]\displaystyle{ x^c\leq y^d }[/math]. Now we have [math]\displaystyle{ (x^a)^{bc}=x^{abc}\leq y^{abd}=(y^b)^{ad} }[/math] and using [math]\displaystyle{ ad\lt bd }[/math] and that the power function is increasing for [math]\displaystyle{ y\neq (0,0,\dots) }[/math] (see the proof of 1) we get [math]\displaystyle{ x^a\lt y^b }[/math]

4: If [math]\displaystyle{ \log_x(y)\leq 0 }[/math] (2) tells us that [math]\displaystyle{ x^1\gt y^n }[/math] for all n. But that we have a infinite bounded sequence which contradicts an axiom of the ordering on the pseudointegers. If [math]\displaystyle{ \log_x(y)=\infty }[/math] (3) tells us that [math]\displaystyle{ x^n\lt y^1 }[/math] for all n. Again we get a contradiction.

5: First I show [math]\displaystyle{ \log_x(yz)\leq \log_x(y)+\log_x(y) }[/math]. Assume for contradiction that [math]\displaystyle{ \log_x(yz)\gt \log_x(y)+\log_x(y) }[/math]. Now we can find [math]\displaystyle{ a_1,a_2,b }[/math] so that [math]\displaystyle{ \frac{a_1}{b}\gt \log_x(y) }[/math], [math]\displaystyle{ \frac{a_2}{b}\gt \log_x(z) }[/math], and [math]\displaystyle{ \log_x(yz)\gt \frac{a_1+a_2}{b} }[/math]. Form (2) we know that [math]\displaystyle{ x^{a_1}\gt y^b }[/math] and [math]\displaystyle{ x^{a_2}\gt z^b }[/math]. And thus [math]\displaystyle{ x^{a_1+a_2}\gt y^bz^b=(yz)^b }[/math]. Using (3) we get a contradiction with [math]\displaystyle{ \log_x(yz)\gt \frac{a_1+a_2}{b} }[/math]. The proof of the opposite inequality is similar.

6: This is equivalent to [math]\displaystyle{ \log_x(y)\gt \log_x(z)\Rightarrow y\gt z }[/math], so assume that [math]\displaystyle{ \log_x(y)\gt \log_x(z) }[/math]. Now we can find [math]\displaystyle{ \log_x(y)\gt \frac{a}{b}\gt \log_x(z) }[/math]. This implies [math]\displaystyle{ z^b\lt x^a\lt y^b }[/math] and then [math]\displaystyle{ z\lt y }[/math].

7: First I show that [math]\displaystyle{ \log_x(z)\leq \log_y(z)\log_x(y) }[/math]. Assume for contradiction that [math]\displaystyle{ \log_x(z)\gt \log_y(z)\log_x(y) }[/math]. Now we can find [math]\displaystyle{ a,b,c\in\mathbb{N} }[/math] with [math]\displaystyle{ \log_x(z)\gt \frac{a}{b} }[/math], [math]\displaystyle{ \frac{a}{c}\gt \log_y(z) }[/math], and [math]\displaystyle{ \frac{c}{b}\gt \log_x(y) }[/math]. Using (2) we get [math]\displaystyle{ y^a\gt z^c }[/math] and [math]\displaystyle{ x^c\gt y^b }[/math] and from this we get [math]\displaystyle{ x^{ac}\gt y^{ab}\gt z^{bc} }[/math] and then [math]\displaystyle{ x^a\gt z^b }[/math] contradicting [math]\displaystyle{ \log_x(z)\gt \frac{a}{b} }[/math]. The proof of the opposite inequality is similar.

We can now define a function [math]\displaystyle{ \varphi_x(y)=e^{\log_x(y)} }[/math]. For this function we have:

  1. [math]\displaystyle{ \varphi_x(yz)=\varphi_x(y)\varphi_x(z) }[/math]
  2. [math]\displaystyle{ y\leq z\Rightarrow\varphi_x(y)\leq \varphi_x(z) }[/math]

Densities of the pseudointegers divisible by y

Let [math]\displaystyle{ n_p }[/math] where [math]\displaystyle{ n\in\mathbb{N} }[/math] denote the nth pseudointeger (here p stands for pseudo, it is not a variable) and let [math]\displaystyle{ [n_p] }[/math] denote the set of the n smallest pseudointegers. We define the density of the pseudointegers divisible by y to be

[math]\displaystyle{ d_y=\lim_{n\to\infty}\frac{|yX\cap [n_p]|}{n}=\lim_{n\to\infty}\frac{|\{z\in X|yz\leq n_p\}|}{n} }[/math]

if the limit exist. Clearly [math]\displaystyle{ d_y\in [0,1] }[/math] if the limit exist. More generally we can always define

[math]\displaystyle{ i_y=\liminf_{n\to\infty}\frac{|yX\cap [n_p]|}{n}=\liminf_{n\to\infty}\frac{|\{z\in X|yz\leq n_p\}|}{n} }[/math]

[math]\displaystyle{ s_y=\limsup_{n\to\infty}\frac{|yX\cap [n_p]|}{n}=\limsup_{n\to\infty}\frac{|\{z\in X|yz\leq n_p\}|}{n} }[/math]

Using that the set [math]\displaystyle{ \{z\in X|yz\leq n_p\} }[/math] is a set of the form [math]\displaystyle{ [m_p] }[/math] for some m, we get:

[math]\displaystyle{ \{z\in X|xyz\leq n_p\}=\{z\in X|x(yz)\leq n_p\}=\{z\in X|yz\in\{a\in X|xa\leq n_p\}\}=\{z\in X|yz\leq|\{a\in X|xa\leq n_p\}|_p\}. }[/math]

From this we get the inequalities: [math]\displaystyle{ i_xi_y\leq i_{xy} }[/math] and [math]\displaystyle{ s_{xy}\leq s_xs_y }[/math]. In particular if [math]\displaystyle{ d_x }[/math] and [math]\displaystyle{ d_y }[/math] exists, then [math]\displaystyle{ d_{xy} }[/math] exists and [math]\displaystyle{ d_{xy}=d_xd_y }[/math]. By induction we get that [math]\displaystyle{ d_{x^n} }[/math] exists and [math]\displaystyle{ d_{x^n}=d_x^n }[/math]. If [math]\displaystyle{ x\leq y }[/math] we have [math]\displaystyle{ \{z\in X|yz\leq n_p\}\subset \{z\in X|yz\leq n_p\} }[/math] so in general [math]\displaystyle{ i_y\leq i_x }[/math] and [math]\displaystyle{ s_y\leq s_x }[/math] and if both densities exists [math]\displaystyle{ d_y\leq d_x }[/math].

If [math]\displaystyle{ d_x=1 }[/math] for some [math]\displaystyle{ x\neq (0,0,\dots) }[/math] we have [math]\displaystyle{ d_{x^n}=1 }[/math] of all n, and for any y there is a n so that [math]\displaystyle{ y\geq x^n }[/math]. This gives us [math]\displaystyle{ 1=i_{x^n}\leq i_y }[/math] which implies that [math]\displaystyle{ d_y }[/math] exists for any y and [math]\displaystyle{ d_y=1 }[/math].

If [math]\displaystyle{ d_x=0 }[/math] for some x then for any [math]\displaystyle{ y\neq (0,0,\dots) }[/math] we know that [math]\displaystyle{ d_y }[/math] exists and [math]\displaystyle{ d_y=0 }[/math]: Assume for contradiction that [math]\displaystyle{ s_y\gt 0 }[/math]. Then for some n, [math]\displaystyle{ y^n\geq x }[/math]. This implies that [math]\displaystyle{ s_y^n=s_{y^n}\leq s_x=0 }[/math]. Contradiction.

Assume that [math]\displaystyle{ d_x }[/math] and [math]\displaystyle{ d_y }[/math] exists and [math]\displaystyle{ d_x\in (0,1) }[/math]. Now we know that [math]\displaystyle{ d_y\in (0,1) }[/math] (I haven't been able to show this without the assumption that [math]\displaystyle{ d_y }[/math] exists). We know that for [math]\displaystyle{ a,b\in \mathbb{N} }[/math]:

[math]\displaystyle{ \frac{a}{b}\gt \log_x(y)\Rightarrow x^a\gt y^b\Rightarrow d_{x^a}\leq d_{y^b}\Rightarrow d_x^a\leq d_y^b\Rightarrow a\log(d_x)\leq b\log(d_y)\Rightarrow \frac{a}{b}\geq \frac{\log(d_y)}{\log(d_x)} }[/math]

(notice that log are taken on numbers in (0,1) so they are negative) where [math]\displaystyle{ log }[/math] is the usual logarithm on the reals. Similarly we get [math]\displaystyle{ \frac{a}{b}\lt \log_x(y)\Rightarrow \frac{a}{b}\leq \frac{\log(d_y)}{\log(d_x)} }[/math]. This tells us that [math]\displaystyle{ \log_x(y)=\frac{\log(d_y)}{\log(d_x)} }[/math]. From this we get that [math]\displaystyle{ -\log(d_x)\log_x(z)=-\log(d_x)\log_y(z)\log_x(y)=-\log(d_y)\log_y(z) }[/math], so the function [math]\displaystyle{ \log: X\to \mathbb{R} }[/math] defined by [math]\displaystyle{ \log(z)=-\log(d_x)\log_x(z) }[/math] for some [math]\displaystyle{ x\in X }[/math] where [math]\displaystyle{ d_x }[/math] exists and [math]\displaystyle{ d_x\in (0,1) }[/math], doesn't depend on the x we choose. From this function we define [math]\displaystyle{ \varphi(z)=e^{\log(z)} }[/math]. If [math]\displaystyle{ d_z }[/math] exists (again, it would be nice to find a proof that it does or to prove that it does have to) we know that [math]\displaystyle{ \varphi(z)=e^{\log(z)}=e^{-\log(d_z)\log_z(z)}=(e^{\log(d_z)})^{-1}=\frac{1}{d_z} }[/math].

Density of the set of pseudointegers

If there exists a [math]\displaystyle{ x\in X: d_x\in (0,1) }[/math], we define

[math]\displaystyle{ d=\lim_{n\to\infty}\frac{|\varphi(X)\cap (0,n]|}{n} }[/math]

if the limit exist. This limit can be greater than 1 and for the integers it is 1. This means that looking only at the structure of X, we can "see if there is too few/many pseudointegers" compared to the integers.

Here I would like to have a proof that d exists under some assumptions. Using the next paragraph this would imply that [math]\displaystyle{ d_x }[/math] exists for all [math]\displaystyle{ x\in X }[/math]. I don't think it is enough to assume that [math]\displaystyle{ d_x\in (0,1) }[/math] for one x, but it might be enough to assume that [math]\displaystyle{ d_x,d_y \in (0,1) }[/math] for some x,y such that [math]\displaystyle{ \log_x(y) }[/math] is irrational.

From [math]\displaystyle{ d }[/math] to [math]\displaystyle{ d_x }[/math]

Let [math]\displaystyle{ \varphi: X \to\mathbb{R} }[/math] be any function such that [math]\displaystyle{ \varphi(x)\varphi(y)=\varphi(xy) }[/math] and [math]\displaystyle{ x\leq y \Rightarrow \varphi(x)\leq \varphi(y) }[/math], and such that the density

[math]\displaystyle{ d=\lim_{n\to\infty}\frac{|\varphi(X)\cap (0,n]|}{n} }[/math]

exists and [math]\displaystyle{ d\in (0,\infty) }[/math] (in particular this implies that [math]\displaystyle{ \lim_{n\to\infty}\varphi(n_p)=\infty }[/math]). We can now find [math]\displaystyle{ d_x }[/math]:

[math]\displaystyle{ d_x=\lim_{n\to\infty}\frac{|\{z\in X|xz\leq n_p\}|}{n}=\lim_{n\to\infty}\frac{|\{z\in X|\varphi(x)\varphi(z)\leq \varphi(n_p)\}|}{|\{z\in X|\varphi(z)\leq \varphi(n_p)\}|}=\lim_{n\to\infty}\frac{|\varphi(X)\cap (0,\frac{\varphi(n_p)}{\varphi(x)}]|}{\varphi(n_p)}\frac{\varphi(n_p)}{|\varphi(X)\cap (0,\varphi(n_p)]|}=\frac{1}{\varphi(x)}. }[/math]

Notice that in general we don't have [math]\displaystyle{ \{z\in X|xz\leq n_p\}=\{z\in X|\varphi(x)\varphi(z)\leq \varphi(n_p)\} }[/math] but [math]\displaystyle{ \{z\in X|\varphi(x)\varphi(z)\lt \varphi(n_p)\}\subset\{z\in X|xz\leq n_p\}\subset\{z\in X|\varphi(x)\varphi(z)\leq \varphi(n_p)\} }[/math]. The above works because we are taking limits.