Linear norm: Difference between revisions
(20 intermediate revisions by 3 users not shown) | |||
Line 13: | Line 13: | ||
== Threads == | == Threads == | ||
* [https://terrytao.wordpress.com/2017/12/16/bi-invariant-metrics-of-linear-growth-on-the-free-group/ | * [https://terrytao.wordpress.com/2017/12/16/bi-invariant-metrics-of-linear-growth-on-the-free-group/ Bi-invariant metrics of linear growth on the free group], Dec 16 2017. | ||
* [https://terrytao.wordpress.com/2017/12/19/bi-invariant-metrics-of-linear-growth-on-the-free-group-ii/ Bi-invariant metrics of linear growth on the free group, II], Dec 19 2017. | * [https://terrytao.wordpress.com/2017/12/19/bi-invariant-metrics-of-linear-growth-on-the-free-group-ii/ Bi-invariant metrics of linear growth on the free group, II], Dec 19 2017. | ||
* [https://terrytao.wordpress.com/2017/12/21/metrics-of-linear-growth-the-solution/ Metrics of linear growth – the solution], Dec 21 2017. | |||
* [https://terrytao.wordpress.com/2018/01/11/homogeneous-length-functions-on-groups/ Homogeneous length functions on groups], Jan 11 2018. | |||
== Key lemmas == | == Key lemmas == | ||
Line 50: | Line 52: | ||
== | == Corollaries == | ||
'''Corollary 0'''. The eight commutators <math>[x^{\pm 1}, y^{\pm 1}], [y^{\pm 1}, x^{\pm 1}]</math> all have the same norm. | |||
'''Proof'''. Each of these commutators is conjugate to either <math>[x,y]</math> or its inverse. <math>\Box</math> | |||
'''Corollary 1'''. The function <math>n \mapsto \|x^n y\|</math> is convex in <math>n</math>. | '''Corollary 1'''. The function <math>n \mapsto \|x^n y\|</math> is convex in <math>n</math>. | ||
Line 68: | Line 74: | ||
'''Corollary 3'''. One has | '''Corollary 3'''. One has | ||
:<math> \|[x,y]^2 x\| \leq \frac{1}{2} ( \| x y^{-1} [x,y] \| + \| xy [x,y] \| ). | :<math> \|[x,y]^2 x\| \leq \frac{1}{2} ( \| x y^{-1} [x,y] \| + \| xy [x,y] \| ).</math> | ||
'''Proof'''. <math>[x,y]^2 x</math> is conjugate both to <math>y (x^{-1} y^{-1} [x,y] x^2)</math> and to <math>(x[x,y]xyx^{-1}) y^{-1}</math>, hence by Lemma 2 | '''Proof'''. <math>[x,y]^2 x</math> is conjugate both to <math>y (x^{-1} y^{-1} [x,y] x^2)</math> and to <math>(x[x,y]xyx^{-1}) y^{-1}</math>, hence by Lemma 2 | ||
Line 77: | Line 83: | ||
:<math>\| [x,y] x\| \leq \frac{1}{4} ( \| x^2 y [x,y] \| + \| xy^{-1} x [x,y] \| ).</math> | :<math>\| [x,y] x\| \leq \frac{1}{4} ( \| x^2 y [x,y] \| + \| xy^{-1} x [x,y] \| ).</math> | ||
'''Proof''' <math>([x,y] x)^2</math> is conjugate both to <math>y^{-1} (x [x,y] x^2 y x^{-1})</math> and to <math>(x^{-1} y^{-1} x [x,y] x^2) y</math>, hence | '''Proof'''. <math>([x,y] x)^2</math> is conjugate both to <math>y^{-1} (x [x,y] x^2 y x^{-1})</math> and to <math>(x^{-1} y^{-1} x [x,y] x^2) y</math>, hence Lemma 2 | ||
:<math>\| [x,y] x\| \leq \frac{1}{4} ( \| x [x,y] x^2 y x^{-1} \| + \| x^{-1} y^{-1} x [x,y] x^2 \| ),</math> | :<math>\| [x,y] x\| \leq \frac{1}{4} ( \| x [x,y] x^2 y x^{-1} \| + \| x^{-1} y^{-1} x [x,y] x^2 \| ),</math> | ||
giving the claim by Lemma 1. <math>\Box</math> | giving the claim by Lemma 1. <math>\Box</math> | ||
'''Corollary 5'''. One has | |||
:<math> \|[x,y] x\| \leq \|x\| + \frac{1}{2} \| [x^2, y] \|</math>. | |||
'''Proof'''. <math>[x,y]x</math> is conjugate to both <math>x [x^{-2},y^{-1}]</math> and to <math>(y^{-1} x^2 y) x^{-1}</math>, hence by Lemma 2 | |||
:<math>\| [x,y] x\| \leq \frac{1}{2} ( \| [x^{-2}, y^{-1}] \| + \| y^{-1} x^2 y \| ),</math> | |||
giving the claim by Lemma 1 and Corollary 0. <math>\Box</math> | |||
'''Corollary 6'''. One has | |||
:<math> \| [x,y]\| \leq \frac{1}{4} ( \| x\| + \| [x^2,y] \| + \| [x,y] x\| ) </math>. | |||
'''Proof'''. From Lemma 2 we have | |||
:<math> \| [x,y] \| \leq \frac{1}{4} ( \| x^{-1} [x,y]^2 \| + \| [x,y] x \| ).</math> | |||
Since <math>x^{-1} [x,y]^2</math> is conjugate to <math>(yx^{-1} y^{-1}) (xyx^{-2} y^{-1} x)</math>, we have | |||
:<math> \| x^{-1} [x,y]^2 \| \leq \| yx^{-1} y^{-1} \| + \|xyx^{-2} y^{-1} x\|</math> | |||
and the claim follows from Lemma 1 and (3). <math>\Box</math> | |||
'''Corollary 7'''. For any <math>m,k</math>, one has | |||
:<math> \| x^m [x,y]^k \| \leq \frac{1}{2} ( \| x^{m-1} [x,y]^k \| + \|x^{m+1} [x,y]^{k-1} \| )</math>. | |||
'''Proof'''. <math>x^m[x,y]^k</math> is trivially conjugate to <math>x(x^{m-1}[x,y]^k)</math> and conjugate to <math>(y^{-1}x^m[x,y]^{k-1}xy)x^{-1}</math>. Hence by Lemma 2, | |||
:<math>\| x^m[x,y]^k \| \leq \frac{1}{2} ( \| x^{m-1}[x,y]^k \| + \| y^{-1}x^m[x,y]^{k-1}xy \| ) = \frac{1}{2} ( \| x^{m-1}[x,y]^k \| + \| x^{m+1}[x,y]^{k-1} \|),</math> | |||
where the final equation is by conjugation invariance (Lemma 1). <math>\Box</math> | |||
'''Corollary 8'''. One has <math>\|x\| \leq \| [x,y] x \|</math>. | |||
'''Proof'''. <math>x</math> is equal to both <math> (x^2 y x y^{-1} x^{-2}) (x^2 y x^{-1} y^{-1} x^{-1})</math> and to <math>(x^2 y x^{-1} y^{-1} x^{-1})^{-1} (x^2 y x^{-1} y^{-1})</math>, hence by Lemma 2 | |||
:<math> \|x\| \leq \frac{1}{2} ( \| x^2 y x y^{-1} x^{-2} \| + \|x^2 y x^{-1} y^{-1}\| ).</math> | |||
By Lemma 1, the RHS is <math>\frac{1}{2} \|x\| + \frac{1}{2} \| [x,y] x \|</math>, and the claim follows. <math>\Box</math> | |||
== Iterations == | == Iterations == | ||
Call a pair of real numbers <math>(\alpha,\beta)</math> '''admissible''' if one has the inequality | |||
:<math> \| [x,y] \| \leq \alpha \|x\| + \beta \|y \|</math> | |||
for all <math>x,y</math>. Clearly the set of admissible pairs is closed and convex, and if <math>(\alpha,\beta)</math> is admissible then so is <math>(\alpha',\beta')</math> for any <math>\alpha' \geq \alpha, \beta' \geq \beta</math>. From Corollary 0 we also see that the set is symmetric: <math>(\alpha,\beta)</math> is admissible if and only if <math>(\beta,\alpha)</math> is. | |||
Writing <math>[x,y] = y^x y^{-1}</math> we see that <math>(0,2)</math> is admissible, and similarly so is <math>(0,2)</math>. | |||
'''Proposition 1'''. If <math>(\alpha,\beta)</math> is admissible, then so is <math>(\frac{\alpha+1}{2}, \frac{\beta}{4})</math>. | |||
'''Proof'''. From Corollary 5 and hypothesis one has | |||
:<math>\| [x,y] x\| \leq \|x\| + \frac{1}{2} ( \alpha \|x^2\| + \beta \|y\| ) = (\alpha+1) \|x\| + \frac{\beta}{2} \|y\|</math> | |||
and hence also | |||
:<math>\| [x^{-1},y^{-1}] x^{-1}\| \leq (\alpha+1) \|x\| + \frac{\beta}{2} \|y\|.</math> | |||
From Corollary 2 we thus have | |||
:<math>\| [x,y]\| \leq \frac{\alpha+1}{2} \|x\| + \frac{\beta}{4} \|y\|.</math> | |||
The map <math>(\alpha,\beta) \mapsto (\frac{\alpha+1}{2}, \frac{\beta}{4})</math> is a contraction with fixed point <math>(1,0)</math>. Thus | |||
:<math> \|[x,y]\| \leq \|x\| \quad (4)</math>. | |||
From symmetry we also see that if <math>(\alpha,\beta)</math> is admissible, then so is <math>(\frac{\beta+1}{2}, \frac{\alpha}{4})</math>. The map <math>(\alpha,\beta) \mapsto (\frac{\beta+1}{2}, \frac{\alpha}{4})</math> is a contraction with fixed point (4/7,1/7), thus | |||
:<math> \|[x,y]\| \leq \frac{4}{7} \|x\| + \frac{1}{7} \|y\| </math>. | |||
== Solution == | |||
''Note: this argument only requires Lemma 1, Lemma 2, and Corollary 7 from the preceding sections.'' | |||
'''Theorem 1''' <math>\|[x,y]\| = 0</math>. | |||
'''Proof''' Let <math>n</math> be a large natural number. Write <math>f(m,k) := \| x^m [x,y]^k \|</math>. Let <math>X_1,\dots,X_{2n}</math> be iid random variables, each taking a value of <math>(-1,0)</math> or <math>(1,-1)</math> with equal probability <math>1/2</math>. From Corollary 7 one has | |||
:<math>f(m,k) \leq {\bf E} f( (m,k) + X_j)</math> | |||
for any <math>(m,k), j</math>, and in particular on iterating | |||
:<math>f(0, n) \leq {\bf E} f( (0,n) + X_1 + \dots + X_{2n} ).</math> | |||
By the triangle inequality, we conclude that | |||
:<math>f(0, n) \leq (\|x\|+\|y\|) {\bf E} | (0,n) + X_1 + \dots + X_{2n} |.</math> | |||
But the random variable <math>(0,n) + X_1 + \dots + X_{2n}</math> has mean zero and variance <math>O(n)</math>, hence by Cauchy-Schwarz | |||
:<math>f(0, n) \ll n^{1/2} (\|x\|+\|y\|).</math> | |||
But the left-hand side is <math>n \|[x,y]\|</math>, so on dividing by <math>n </math> and taking limits we obtain the claim.<math>\Box</math> | |||
As a consequence of this theorem and the triangle inequality, any seminorm on a group will factor through to its abelianisation. | |||
== Writeup == | |||
* Files for the writeup may be found in [https://www.dropbox.com/sh/wg4y7ptahwq3xo1/AABreDLrXH3hniz1jiFTtvska?dl=0 this directory]. | |||
* The arXiv preprint may be found [https://arxiv.org/abs/1801.03908 here]. | |||
* The paper has been published in [http://dx.doi.org/10.2140/ant.2018.12.1773 Algebra & Number Theory]]. | |||
Here are the [[linear norm grant acknowledgments]]. |
Latest revision as of 10:12, 27 November 2018
This is the wiki page for understanding seminorms of linear growth on a group [math]\displaystyle{ G }[/math] (such as the free group on two generators). These are functions [math]\displaystyle{ \| \|: G \to [0,+\infty) }[/math] that obey the triangle inequality
- [math]\displaystyle{ \|xy\| \leq \|x\| + \|y\| \quad (1) }[/math]
and the linear growth condition
- [math]\displaystyle{ \|x^n \| = |n| \|x\| \quad (2) }[/math]
for all [math]\displaystyle{ x,y \in G }[/math] and [math]\displaystyle{ n \in {\bf Z} }[/math].
We use the usual group theory notations [math]\displaystyle{ x^y := yxy^{-1} }[/math] and [math]\displaystyle{ [x,y] := xyx^{-1}y^{-1} }[/math].
Threads
- Bi-invariant metrics of linear growth on the free group, Dec 16 2017.
- Bi-invariant metrics of linear growth on the free group, II, Dec 19 2017.
- Metrics of linear growth – the solution, Dec 21 2017.
- Homogeneous length functions on groups, Jan 11 2018.
Key lemmas
Henceforth we assume we have a seminorm [math]\displaystyle{ \| \| }[/math] of linear growth. The letters [math]\displaystyle{ s,t,x,y,z,w }[/math] are always understood to be in [math]\displaystyle{ G }[/math], and [math]\displaystyle{ i,j,n,m }[/math] are always understood to be integers.
From (2) we of course have
- [math]\displaystyle{ \|x^{-1} \| = \| x\| \quad (3) }[/math]
Lemma 1. If [math]\displaystyle{ x }[/math] is conjugate to [math]\displaystyle{ y }[/math], then [math]\displaystyle{ \|x\| = \|y\| }[/math].
Proof. By hypothesis, [math]\displaystyle{ x = zyz^{-1} }[/math] for some [math]\displaystyle{ z }[/math], thus [math]\displaystyle{ x^n = z y^n z^{-1} }[/math], hence by the triangle inequality
- [math]\displaystyle{ n \|x\| = \|x^n \| \leq \|z\| + n \|y\| + \|z^{-1} \| }[/math]
for any [math]\displaystyle{ n \geq 1 }[/math]. Dividing by [math]\displaystyle{ n }[/math] and taking limits we conclude that [math]\displaystyle{ \|x\| \leq \|y\| }[/math]. Similarly [math]\displaystyle{ \|y\| \leq \|x\| }[/math], giving the claim. [math]\displaystyle{ \Box }[/math]
An equivalent form of the lemma is that
- [math]\displaystyle{ \|xy\| = \|yx\| \quad (4). }[/math]
We can generalise Lemma 1:
Lemma 2. If [math]\displaystyle{ x^i }[/math] is conjugate to [math]\displaystyle{ wy }[/math] and [math]\displaystyle{ x^j }[/math] is conjugate to [math]\displaystyle{ zw^{-1} }[/math], then [math]\displaystyle{ \|x\| \leq \frac{1}{|i+j|} ( \|w\| + \|z\| ) }[/math].
Proof. By hypothesis, [math]\displaystyle{ x^i = s wy s^{-1} }[/math] and [math]\displaystyle{ x^j = t zw^{-1} t^{-1} }[/math] for some [math]\displaystyle{ s,t }[/math]. For any natural number [math]\displaystyle{ n }[/math], we then have
- [math]\displaystyle{ x^{in} x^{jn} = s wy \dots wy s^{-1} t zw^{-1} \dots zw^{-1} t^{-1} }[/math]
where the terms [math]\displaystyle{ wy, zw }[/math] are each repeated [math]\displaystyle{ n }[/math] times. By Lemma 1, conjugation by [math]\displaystyle{ w }[/math] does not change the norm. From many applications of this and the triangle inequality, we conclude that
- [math]\displaystyle{ |i+j| n \|x\| = \| x^{in} x^{jn} \| \leq \|s\| + n \|y\| + \|s^{-1} t\| + n \|z\| + \|t^{-1}\|. }[/math]
Dividing by [math]\displaystyle{ n }[/math] and sending [math]\displaystyle{ n \to \infty }[/math], we obtain the claim. [math]\displaystyle{ \Box }[/math]
Corollaries
Corollary 0. The eight commutators [math]\displaystyle{ [x^{\pm 1}, y^{\pm 1}], [y^{\pm 1}, x^{\pm 1}] }[/math] all have the same norm.
Proof. Each of these commutators is conjugate to either [math]\displaystyle{ [x,y] }[/math] or its inverse. [math]\displaystyle{ \Box }[/math]
Corollary 1. The function [math]\displaystyle{ n \mapsto \|x^n y\| }[/math] is convex in [math]\displaystyle{ n }[/math].
Proof. [math]\displaystyle{ x^n y }[/math] is conjugate to [math]\displaystyle{ x (x^{n-1} y) }[/math] and to [math]\displaystyle{ (x^{n+1} y) x^{-1} }[/math], hence by Lemma 2
- [math]\displaystyle{ \| x^n y \| \leq \frac{1}{2} (\| x^{n-1} y \| + \| x^{n+1} y \|), }[/math]
giving the claim. [math]\displaystyle{ \Box }[/math]
Corollary 2. For any [math]\displaystyle{ k \geq 1 }[/math], one has
- [math]\displaystyle{ \| [x,y] \| \leq \frac{1}{2k+2} (\| [x^{-1},y^{-1}]^k x^{-1} \| + \| [x,y]^k x \|). }[/math]
Thus for instance
- [math]\displaystyle{ \| [x,y] \| \leq \frac{1}{4} (\| [x^{-1},y^{-1}] x^{-1} \| + \| [x,y] x \|). }[/math]
Proof. [math]\displaystyle{ [x,y]^{k+1} }[/math] is conjugate both to [math]\displaystyle{ x(y[x^{-1},y^{-1}]^k x^{-1}y^{-1}) }[/math] and to [math]\displaystyle{ (y^{-1} [x,y]^k xy)x^{-1} }[/math], hence by Lemma 2
- [math]\displaystyle{ \| [x,y] \| \leq \frac{1}{2k+2} ( \| y[x^{-1},y^{-1}]^k x^{-1} \| + \| (y^{-1} [x,y]^k xy)x^{-1}\|) }[/math]
giving the claim by Lemma 1. [math]\displaystyle{ \Box }[/math]
Corollary 3. One has
- [math]\displaystyle{ \|[x,y]^2 x\| \leq \frac{1}{2} ( \| x y^{-1} [x,y] \| + \| xy [x,y] \| ). }[/math]
Proof. [math]\displaystyle{ [x,y]^2 x }[/math] is conjugate both to [math]\displaystyle{ y (x^{-1} y^{-1} [x,y] x^2) }[/math] and to [math]\displaystyle{ (x[x,y]xyx^{-1}) y^{-1} }[/math], hence by Lemma 2
- [math]\displaystyle{ \displaystyle \|[x,y]^2 x\| \leq \frac{1}{2} ( \|x^{-1} y^{-1} [x,y] x^2\| + \|x[x,y]xyx^{-1}\|) }[/math]
giving the claim by Lemma 1. [math]\displaystyle{ \Box }[/math]
Corollary 4. One has
- [math]\displaystyle{ \| [x,y] x\| \leq \frac{1}{4} ( \| x^2 y [x,y] \| + \| xy^{-1} x [x,y] \| ). }[/math]
Proof. [math]\displaystyle{ ([x,y] x)^2 }[/math] is conjugate both to [math]\displaystyle{ y^{-1} (x [x,y] x^2 y x^{-1}) }[/math] and to [math]\displaystyle{ (x^{-1} y^{-1} x [x,y] x^2) y }[/math], hence Lemma 2
- [math]\displaystyle{ \| [x,y] x\| \leq \frac{1}{4} ( \| x [x,y] x^2 y x^{-1} \| + \| x^{-1} y^{-1} x [x,y] x^2 \| ), }[/math]
giving the claim by Lemma 1. [math]\displaystyle{ \Box }[/math]
Corollary 5. One has
- [math]\displaystyle{ \|[x,y] x\| \leq \|x\| + \frac{1}{2} \| [x^2, y] \| }[/math].
Proof. [math]\displaystyle{ [x,y]x }[/math] is conjugate to both [math]\displaystyle{ x [x^{-2},y^{-1}] }[/math] and to [math]\displaystyle{ (y^{-1} x^2 y) x^{-1} }[/math], hence by Lemma 2
- [math]\displaystyle{ \| [x,y] x\| \leq \frac{1}{2} ( \| [x^{-2}, y^{-1}] \| + \| y^{-1} x^2 y \| ), }[/math]
giving the claim by Lemma 1 and Corollary 0. [math]\displaystyle{ \Box }[/math]
Corollary 6. One has
- [math]\displaystyle{ \| [x,y]\| \leq \frac{1}{4} ( \| x\| + \| [x^2,y] \| + \| [x,y] x\| ) }[/math].
Proof. From Lemma 2 we have
- [math]\displaystyle{ \| [x,y] \| \leq \frac{1}{4} ( \| x^{-1} [x,y]^2 \| + \| [x,y] x \| ). }[/math]
Since [math]\displaystyle{ x^{-1} [x,y]^2 }[/math] is conjugate to [math]\displaystyle{ (yx^{-1} y^{-1}) (xyx^{-2} y^{-1} x) }[/math], we have
- [math]\displaystyle{ \| x^{-1} [x,y]^2 \| \leq \| yx^{-1} y^{-1} \| + \|xyx^{-2} y^{-1} x\| }[/math]
and the claim follows from Lemma 1 and (3). [math]\displaystyle{ \Box }[/math]
Corollary 7. For any [math]\displaystyle{ m,k }[/math], one has
- [math]\displaystyle{ \| x^m [x,y]^k \| \leq \frac{1}{2} ( \| x^{m-1} [x,y]^k \| + \|x^{m+1} [x,y]^{k-1} \| ) }[/math].
Proof. [math]\displaystyle{ x^m[x,y]^k }[/math] is trivially conjugate to [math]\displaystyle{ x(x^{m-1}[x,y]^k) }[/math] and conjugate to [math]\displaystyle{ (y^{-1}x^m[x,y]^{k-1}xy)x^{-1} }[/math]. Hence by Lemma 2,
- [math]\displaystyle{ \| x^m[x,y]^k \| \leq \frac{1}{2} ( \| x^{m-1}[x,y]^k \| + \| y^{-1}x^m[x,y]^{k-1}xy \| ) = \frac{1}{2} ( \| x^{m-1}[x,y]^k \| + \| x^{m+1}[x,y]^{k-1} \|), }[/math]
where the final equation is by conjugation invariance (Lemma 1). [math]\displaystyle{ \Box }[/math]
Corollary 8. One has [math]\displaystyle{ \|x\| \leq \| [x,y] x \| }[/math].
Proof. [math]\displaystyle{ x }[/math] is equal to both [math]\displaystyle{ (x^2 y x y^{-1} x^{-2}) (x^2 y x^{-1} y^{-1} x^{-1}) }[/math] and to [math]\displaystyle{ (x^2 y x^{-1} y^{-1} x^{-1})^{-1} (x^2 y x^{-1} y^{-1}) }[/math], hence by Lemma 2
- [math]\displaystyle{ \|x\| \leq \frac{1}{2} ( \| x^2 y x y^{-1} x^{-2} \| + \|x^2 y x^{-1} y^{-1}\| ). }[/math]
By Lemma 1, the RHS is [math]\displaystyle{ \frac{1}{2} \|x\| + \frac{1}{2} \| [x,y] x \| }[/math], and the claim follows. [math]\displaystyle{ \Box }[/math]
Iterations
Call a pair of real numbers [math]\displaystyle{ (\alpha,\beta) }[/math] admissible if one has the inequality
- [math]\displaystyle{ \| [x,y] \| \leq \alpha \|x\| + \beta \|y \| }[/math]
for all [math]\displaystyle{ x,y }[/math]. Clearly the set of admissible pairs is closed and convex, and if [math]\displaystyle{ (\alpha,\beta) }[/math] is admissible then so is [math]\displaystyle{ (\alpha',\beta') }[/math] for any [math]\displaystyle{ \alpha' \geq \alpha, \beta' \geq \beta }[/math]. From Corollary 0 we also see that the set is symmetric: [math]\displaystyle{ (\alpha,\beta) }[/math] is admissible if and only if [math]\displaystyle{ (\beta,\alpha) }[/math] is.
Writing [math]\displaystyle{ [x,y] = y^x y^{-1} }[/math] we see that [math]\displaystyle{ (0,2) }[/math] is admissible, and similarly so is [math]\displaystyle{ (0,2) }[/math].
Proposition 1. If [math]\displaystyle{ (\alpha,\beta) }[/math] is admissible, then so is [math]\displaystyle{ (\frac{\alpha+1}{2}, \frac{\beta}{4}) }[/math].
Proof. From Corollary 5 and hypothesis one has
- [math]\displaystyle{ \| [x,y] x\| \leq \|x\| + \frac{1}{2} ( \alpha \|x^2\| + \beta \|y\| ) = (\alpha+1) \|x\| + \frac{\beta}{2} \|y\| }[/math]
and hence also
- [math]\displaystyle{ \| [x^{-1},y^{-1}] x^{-1}\| \leq (\alpha+1) \|x\| + \frac{\beta}{2} \|y\|. }[/math]
From Corollary 2 we thus have
- [math]\displaystyle{ \| [x,y]\| \leq \frac{\alpha+1}{2} \|x\| + \frac{\beta}{4} \|y\|. }[/math]
The map [math]\displaystyle{ (\alpha,\beta) \mapsto (\frac{\alpha+1}{2}, \frac{\beta}{4}) }[/math] is a contraction with fixed point [math]\displaystyle{ (1,0) }[/math]. Thus
- [math]\displaystyle{ \|[x,y]\| \leq \|x\| \quad (4) }[/math].
From symmetry we also see that if [math]\displaystyle{ (\alpha,\beta) }[/math] is admissible, then so is [math]\displaystyle{ (\frac{\beta+1}{2}, \frac{\alpha}{4}) }[/math]. The map [math]\displaystyle{ (\alpha,\beta) \mapsto (\frac{\beta+1}{2}, \frac{\alpha}{4}) }[/math] is a contraction with fixed point (4/7,1/7), thus
- [math]\displaystyle{ \|[x,y]\| \leq \frac{4}{7} \|x\| + \frac{1}{7} \|y\| }[/math].
Solution
Note: this argument only requires Lemma 1, Lemma 2, and Corollary 7 from the preceding sections.
Theorem 1 [math]\displaystyle{ \|[x,y]\| = 0 }[/math].
Proof Let [math]\displaystyle{ n }[/math] be a large natural number. Write [math]\displaystyle{ f(m,k) := \| x^m [x,y]^k \| }[/math]. Let [math]\displaystyle{ X_1,\dots,X_{2n} }[/math] be iid random variables, each taking a value of [math]\displaystyle{ (-1,0) }[/math] or [math]\displaystyle{ (1,-1) }[/math] with equal probability [math]\displaystyle{ 1/2 }[/math]. From Corollary 7 one has
- [math]\displaystyle{ f(m,k) \leq {\bf E} f( (m,k) + X_j) }[/math]
for any [math]\displaystyle{ (m,k), j }[/math], and in particular on iterating
- [math]\displaystyle{ f(0, n) \leq {\bf E} f( (0,n) + X_1 + \dots + X_{2n} ). }[/math]
By the triangle inequality, we conclude that
- [math]\displaystyle{ f(0, n) \leq (\|x\|+\|y\|) {\bf E} | (0,n) + X_1 + \dots + X_{2n} |. }[/math]
But the random variable [math]\displaystyle{ (0,n) + X_1 + \dots + X_{2n} }[/math] has mean zero and variance [math]\displaystyle{ O(n) }[/math], hence by Cauchy-Schwarz
- [math]\displaystyle{ f(0, n) \ll n^{1/2} (\|x\|+\|y\|). }[/math]
But the left-hand side is [math]\displaystyle{ n \|[x,y]\| }[/math], so on dividing by [math]\displaystyle{ n }[/math] and taking limits we obtain the claim.[math]\displaystyle{ \Box }[/math]
As a consequence of this theorem and the triangle inequality, any seminorm on a group will factor through to its abelianisation.
Writeup
- Files for the writeup may be found in this directory.
- The arXiv preprint may be found here.
- The paper has been published in Algebra & Number Theory].
Here are the linear norm grant acknowledgments.