Estimating a sum: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
For any <math>\sigma, t>0</math> and natural number <math>N</math>, introduce the sum
For any <math>\sigma, t>0</math> and natural number <math>N</math>, introduce the sum


:<math>F_{\sigma,t}(N) := \sum_{n=1}^N \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}}.</math>
:<math>S_{\sigma,t}(N) := \sum_{n=1}^N \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}}.</math>


This sum appears a number of times in the Polymath15 project, and it is therefore of interest to estimate it.   
This sum appears a number of times in the Polymath15 project, and it is therefore of interest to estimate it.   


'''Lemma 1'''  Let <math>\sigma,t>0</math> and <math>N \geq N_0 \geq 1</math>.  Then
'''Lemma 1'''  Let <math>\sigma,t>0</math> and <math>N \geq N_0 \geq 1</math>.  Then
:<math> \sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} \leq F_{\sigma,t}(N) \leq
:<math> \sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} \leq S_{\sigma,t}(N) \leq
\sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \max( N_0^{1-\sigma - \frac{t}{4} \log \frac{N^2}{N_0}}, N^{1-\sigma - \frac{t}{4} \log N} ) \log \frac{N}{N_0}.
\sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \max( N_0^{1-\sigma - \frac{t}{4} \log \frac{N^2}{N_0}}, N^{1-\sigma - \frac{t}{4} \log N} ) \log \frac{N}{N_0}.
</math>
</math>


'''Proof''' The left-hand inequality is obvious.  To prove the right-hand inequality, observe (from writing the summand as <math>\frac{\exp( \frac{t}{4} (\log N - \log n)^2}{n^\sigma \exp(\frac{t}{4} \log^2 N)}</math>) that the summand is decreasing for <math>1 \leq n \leq N</math>, hence by the integral test one has
'''Proof''' The left-hand inequality is obvious.  To prove the right-hand inequality, observe (from writing the summand as <math>\frac{\exp( \frac{t}{4} (\log N - \log n)^2}{n^\sigma \exp(\frac{t}{4} \log^2 N)}</math>) that the summand is decreasing for <math>1 \leq n \leq N</math>, hence by the integral test one has
:<math>F_{\sigma,t}(N) \leq \sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \int_{N_0}^N \frac{1}{a^{\sigma + \frac{t}{4} \log \frac{N^2}{a}}}\ da.</math>
:<math>S_{\sigma,t}(N) \leq \sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \int_{N_0}^N \frac{1}{a^{\sigma + \frac{t}{4} \log \frac{N^2}{a}}}\ da.</math>
Making the change of variables <math>a = e^u</math>, the right-hand side becomes
Making the change of variables <math>a = e^u</math>, the right-hand side becomes
:<math>\sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \int_{\log N_0}^{\log N} \exp( (1-\sigma) u + \frac{t}{4} (u^2 - 2u \log N) )\ du.</math>
:<math>\sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \int_{\log N_0}^{\log N} \exp( (1-\sigma) u + \frac{t}{4} (u^2 - 2u \log N) )\ du.</math>
Line 20: Line 20:
Thus for instance if <math>\sigma = 0.7</math>, <math>t = 0.4</math>, and <math>N \geq N_0 = 2000</math>, one has
Thus for instance if <math>\sigma = 0.7</math>, <math>t = 0.4</math>, and <math>N \geq N_0 = 2000</math>, one has


:<math>F_{0.7, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.7 + 0.1 \log \frac{N^2}{n}}} + \max( 2000^{0.3 - 0.1 \log \frac{N^2}{2000}}, N^{0.3 - 0.1 \log N}) \log \frac{N}{2000}.  </math>
:<math>S_{0.7, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.7 + 0.1 \log \frac{N^2}{n}}} + \max( 2000^{0.3 - 0.1 \log \frac{N^2}{2000}}, N^{0.3 - 0.1 \log N}) \log \frac{N}{2000}.  </math>
One can compute numerically that the second term on the RHS is at most 0.0087, thus
One can compute numerically that the second term on the RHS is at most 0.0087, thus
:<math>F_{0.7, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.7 + 0.1 \log \frac{N^2}{n}}} + 0.0087</math>
:<math>S_{0.7, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.7 + 0.1 \log \frac{N^2}{n}}} + 0.0087</math>
for all <math>N \geq 2000</math>.  In particular
for all <math>N \geq 2000</math>.  In particular
:<math>F_{0.7, 0.4}(N) \leq F_{0.7, 0.4}(2000) + 0.0087 \leq 1.706.</math>
:<math>S_{0.7, 0.4}(N) \leq S_{0.7, 0.4}(2000) + 0.0087 \leq 1.706.</math>


Similarly one has
Similarly one has
:<math>F_{0.3, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.3 + 0.1 \log \frac{N^2}{n}}} + \max( 2000^{0.7 - 0.1 \log \frac{N^2}{2000}}, N^{0.7 - 0.1 \log N}) \log \frac{N}{2000}.</math>
:<math>S_{0.3, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.3 + 0.1 \log \frac{N^2}{n}}} + \max( 2000^{0.7 - 0.1 \log \frac{N^2}{2000}}, N^{0.7 - 0.1 \log N}) \log \frac{N}{2000}.</math>
The second term can be shown to be at most <math>0.253</math>, thus
The second term can be shown to be at most <math>0.253</math>, thus
:<math>F_{0.3, 0.4}(N) \leq F_{0.3, 0.4}(2000) + 0.253 \leq 3.469</math>
:<math>S_{0.3, 0.4}(N) \leq S_{0.3, 0.4}(2000) + 0.253 \leq 3.469</math>
for all <math>N \geq 2000</math>.
for all <math>N \geq 2000</math>.
=== Evaluating many sums ===
Let <math>N</math> be a natural number.  For any complex numbers <math>z,w</math>, we define the quantity
:<math>F_N(z,w) := \sum_{n=1}^N  n^{-z + w \log n}.</math>
In particular, the function <math>f_t(x+iy)</math> in the writeup has the form
:<math>f_t(x+iy) = F_N( \frac{1+y-ix}{2} + \frac{t}{2} \alpha(\frac{1+y-ix}{2}), \frac{t}{4} ) + \gamma \overline{F_N( \frac{1-y-ix}{2} + \frac{t}{2} \alpha(\frac{1-y-ix}{2}), \frac{t}{4} )}</math>
It is thus of interest to efficiently evaluate <math>F_N(z,w)</math> for multiple different values of <math>z,w</math>.  We will be particularly interested in the regime where <math>w=O(1)</math> and <math>z = z_0 + \zeta</math> for some <math>\zeta = O(1)</math> and some fixed <math>z_0</math> (e.g. <math>z_0 = \frac{1-iX}{2}</math>, thus
:<math>F_N(z_0+\zeta, w) = \sum_{n=1}^N n^{-z_0} n^{-\zeta + w \log n}.</math>
If one were to naively evaluate <math>F_N(-\frac{iX}{2}+\zeta, w)</math> at <math>M</math> different values of <math>(z,w)</math>, this would require about <math>O(NM)</math> operations.  We now seek to use fewer operations to perform these evaluations, at the cost of some accuracy.
We can partition the interval <math>\{1,\dots,N\}</math> into an initial segment <math>\{1,\dots,N_0\}</math> and about <math>O(N/H)</math> segments of the form <math>\{ N_i - H/2, \dots, N_i + H/2\}</math> for various <math>N_i</math>.  This lets us split
:<math>F_N(z_0+\zeta, w) = F_{N_0}(-\frac{iX}{2}+\zeta, w) + \sum_i \sum_{-H/2 \leq h \leq H/2}
(N_i + h)^{-z_0} \exp( - \zeta \log(N_i+h) + w \log^2(N_i+h) ).</math>
Writing <math>\log(N_i + h) = \log(N_i) + \varepsilon_{i,h}</math>, where <math>\varepsilon_{i,h} := \log(1 + \frac{h}{N_i})</math>, we thus have
:<math>F_N(z_0+\zeta, w) = F_{N_0}(z_0+\zeta, w) + \sum_i \sum_{-H/2 \leq h \leq H/2}
(N_i + h)^{-z_0} \exp( A_i(\zeta,w) + B_i(\zeta,w) \varepsilon_{i,h} + w \varepsilon_{i,h}^2 )</math>
where
:<math> A_i(\zeta,w) :=  - \zeta \log(N_i) + w \log^2(N_i)</math>
and
:<math> B_i(\zeta,w) := - \zeta + 2 w \log N_i.</math>
From Taylor's theorem with remainder, we have
:<math> \exp( a ) = \sum_{j=0}^T \frac{a^j}{j!} + O_{\leq}( \frac{|a|^{T+1}}{(T+1)!} \exp(|a|) )</math>
and hence
:<math>F_N(z_0+\zeta, w) = F_{N_0}(z_0+\zeta, w) + \sum_i \sum_{-H/2 \leq h \leq H/2}
(N_i + h)^{-z_0} \exp( A_i(\zeta,w) ) \sum_{j=0}^T \frac{1}{j!} (B_i(\zeta,w) \varepsilon_{i,h} + w \varepsilon_{i,h}^2)^j
+ O_{\leq}( E )</math>
where <math>E</math> is the error term
:<math> \sum_i \sum_{-H/2 \leq h \leq H/2} (n_0+h)^{-\mathrm{Re}(z_0)} \exp( \mathrm{Re} A_i(\zeta,w) ) \frac{|B_i(\zeta,w) \varepsilon_{i,h} + w \varepsilon_{i,h}^2|^{T+1}}{(T+1)!} \exp( |B_i(\zeta,w) \varepsilon_{i,h} + w \varepsilon_{i,h}^2| ).</math>
By binomial expansion, we then have
:<math>F_N(z_0+\zeta, w) = F_{N_0}(z_0+\zeta, w) + \sum_i \sum_{-H/2 \leq h \leq H/2}
(N_i + h)^{-z_0} \exp( A_i(\zeta,w) ) \sum_{j_1,j_2 \geq 0: j_1+j_2 \leq T} \frac{1}{j_1! j_2!} (B_i(\zeta,w) \varepsilon_{i,h})^{j_1} (w \varepsilon_{i,h}^2)^{j_2}
+ O_{\leq}( E )</math>
which we can rearrange as
:<math>F_N(z_0+\zeta, w) = F_{N_0}(z_0+\zeta, w) + \sum_i \sum_{j=0}^{2T} \beta_{i,j,h} \sigma_{i,j}(\zeta,w)+ O_{\leq}( E )</math>
where
:<math> \beta_{i,j,h} := \sum_{-H/2 \leq h \leq H/2} (N_i + h)^{-z_0} \varepsilon_{i,h}^j</math>
and
:<math>\sigma_{i,j}(\zeta,w) := \sum_{j_1,j_2 \geq 0: j_1+2j_2 = j; j_1+j_2 \leq T} \frac{1}{j_1! j_2!} B_i(\zeta,w)^{j_1} w^{j_2}.</math>
The point is that it only requires <math>O( \frac{N}{H} T H )</math> calculations to compute the <math>\beta_{i,j,h}</math>, and <math>O( \frac{N}{H} T M )</math> calculations to compute the <math>\sigma_{i,j}(\zeta,w)</math>, so the total computation time is now
:<math>O( N_0 M + \frac{N}{H} T H + \frac{N}{H} T M + \frac{N}{H} T M ) = O( NM ( \frac{N_0}{N} + \frac{T}{M} + \frac{T}{H} ) )</math>
which can be a significant speedup over <math>O(NM)</math> when <math>N_0 \ll N</math>, <math>T \ll M</math>, and <math>T \ll H</math>.
Now we control the error term <math>E</math>.  From the concavity of the logarithm we have
:<math>|\varepsilon_{i,h}| \leq |\varepsilon_{i,-H/2}| = \log \frac{N_i}{N_i-H/2} \leq \log(1 + \frac{H}{2N_0})</math>
and
:<math> |B_i(\zeta,w)| \leq |\zeta| + 2 |w| \log N</math>
and hence
:<math> E \leq \frac{\delta^{T+1}}{(T+1)!} \exp( \delta) \sum_i \exp( \mathrm{Re} A_i(\zeta,w) )
\sum_{-H/2 \leq h \leq H/2} (N_i+h)^{-\mathrm{Re} z_0}
</math>
where
:<math> \delta := (|\zeta| + 2 |w| \log N) \log(1+\frac{H}{2N_0}) + |w| \log^2(1+\frac{H}{2N_0}).</math>
== Euler2 mollifier in the toy model ==
The toy version of preventing <math>H_t(x+iy)</math> from vanishing is that of establishing the inequality
:<math> |\sum_{n=1}^N \frac{1}{n^{\frac{1+y-ix}{2}+\frac{t}{4} \log \frac{N^2}{n} - \frac{\pi i t}{8}}}| > N^{-y} |\sum_{n=1}^N \frac{1}{n^{\frac{1-y-ix}{2}+\frac{t}{4} \log \frac{N^2}{n} - \frac{\pi i t}{8}}}|.</math>
Direct application of the triangle inequality lets us do this if <math>S < 2</math>, where S is the sum
:<math> S := \sum_{n=1}^N \frac{1}{n^{\frac{1+y}{2}+\frac{t}{4} \log \frac{N^2}{n}}} + \frac{N^{-y}}{n^{\frac{1-y}{2}+\frac{t}{4} \log \frac{N^2}{n}}}.</math>
One can estimate S using the estimate in the first section of this web page.
Now we use a Euler2 mollifier.  The lemma here is
'''Lemma'''  Let <math>a_1,\dots,a_N</math> be complex numbers, and let <math>b_2</math> be a number such that whenever <math>1 \leq n \leq N</math> is even, <math>b_n a_{n/2}</math> lies on the line segment <math>\{ \theta a_n: 0 \leq \theta \leq 1\}</math> connecting 0 with <math>a_n</math>.  Then we have the lower bound
:<math> |1-b_2| |\sum_{n=1}^N a_n| \geq 2 |a_1| - (1-|b_2|) \sum_{n=1}^N |a_n| - 2 |b_2| \sum_{N/2 < n \leq N} |a_n|</math>
and the upper bound
:<math> |1-b_2| |\sum_{n=1}^N a_n| \leq (1-|b_2|) \sum_{n=1}^N |a_n| + 2 |b_2| \sum_{N/2 < n \leq N} |a_n|.</math>
'''Proof''' The left-hand side can be written as
:<math> |\sum_{n=1}^{2N} (1_{n \leq N} a_n - 1_{2|n} a_{n/2} b_2)|.</math>
By the triangle inequality, this is bounded above by
:<math> \sum_{n=1}^{2N} |1_{n \leq N} a_n - 1_{2|n} a_{n/2} b_2|</math>
and below by
:<math> 2 |a_1| - \sum_{n=1}^{2N} |1_{n \leq N} a_n - 1_{2|n} a_{n/2} b_2|.</math>
We have
:<math> \sum_{n=1}^{2N} |1_{n \leq N} a_n - 1_{2|n} a_{n/2} b_2| = \sum_{n=1}^N |a_n| - 1_{2|n} |a_{n/2}| |b_2| + \sum_{n=N+1}^{2N} 1_{2|n} |a_{n/2}| |b_2|</math>
which we can rearrange as
:<math> (1 - |b_2|) \sum_{n=1}^N |a_n| + 2 |b_2| \sum_{N/2 < n \leq N} |a_n|</math>
and the claim follows.
We apply this lemma with <math>a_n = \frac{1}{n^{\frac{1 \pm y-ix}{2}+\frac{t}{4} \log \frac{N^2}{n} - \frac{\pi i t}{8}}}</math> and <math>b_2 =
\frac{1}{2^{\frac{1+y-ix}{2}+\frac{t}{4} \log \frac{N^2}{2} - \frac{\pi i t}{8}}}</math>.  The hypotheses of the lemma are easily verified, and we conclude that
:<math> |1-b_2| |\sum_{n=1}^N \frac{1}{n^{\frac{1+y-ix}{2}+\frac{t}{4} \log \frac{N^2}{n} - \frac{\pi i t}{8}}}|
\geq 2 - (1-|b_2|) \sum_{n=1}^N \frac{1}{n^{\frac{1+y}{2}+\frac{t}{4} \log \frac{N^2}{n}}} - 2 |b_2|
\sum_{N/2 < n \leq N} \frac{1}{n^{\frac{1+y}{2}+\frac{t}{4} \log \frac{N^2}{n}}} </math>
and
:<math> |1-b_2| |\sum_{n=1}^N \frac{1}{n^{\frac{1-y-ix}{2}+\frac{t}{4} \log \frac{N^2}{n} - \frac{\pi i t}{8}}}|
\leq (1-|b_2|) \sum_{n=1}^N \frac{1}{n^{\frac{1-y}{2}+\frac{t}{4} \log \frac{N^2}{n}}} + 2 |b_2|
\sum_{N/2 < n \leq N} \frac{1}{n^{\frac{1-y}{2}+\frac{t}{4} \log \frac{N^2}{n}}}.</math>
This leads to a modified criterion
:<math> (1-|b_2|) S + 2 |b_2| \sum_{N/2 < n \leq N} \frac{1}{n^{\frac{1+y}{2}+\frac{t}{4} \log \frac{N^2}{n}}} + \frac{N^{-y}}{n^{\frac{1-y}{2}+\frac{t}{4} \log \frac{N^2}{n}}}) < 2.</math>
We gain a factor of <math>(1 - |b_2|)</math> on the main term, but pick up an additional tail term summing over <math>N/2 < n \leq N</math>.  This tail term should be small for N large.  The summand is monotone decreasing in N so we can majorise it by N/2 times the value at N/2, thus we obtain the simplified criterion
:<math> (1 - |b_2|) S + N |b_2| \frac{1 + 2^{-y}}{(N/2)^{\frac{1+y}{2}+\frac{t}{4} \log(2N)}} < 2.
</math>
[[Category:Polymath15]]

Latest revision as of 06:17, 6 July 2018

For any [math]\displaystyle{ \sigma, t\gt 0 }[/math] and natural number [math]\displaystyle{ N }[/math], introduce the sum

[math]\displaystyle{ S_{\sigma,t}(N) := \sum_{n=1}^N \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}}. }[/math]

This sum appears a number of times in the Polymath15 project, and it is therefore of interest to estimate it.

Lemma 1 Let [math]\displaystyle{ \sigma,t\gt 0 }[/math] and [math]\displaystyle{ N \geq N_0 \geq 1 }[/math]. Then

[math]\displaystyle{ \sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} \leq S_{\sigma,t}(N) \leq \sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \max( N_0^{1-\sigma - \frac{t}{4} \log \frac{N^2}{N_0}}, N^{1-\sigma - \frac{t}{4} \log N} ) \log \frac{N}{N_0}. }[/math]

Proof The left-hand inequality is obvious. To prove the right-hand inequality, observe (from writing the summand as [math]\displaystyle{ \frac{\exp( \frac{t}{4} (\log N - \log n)^2}{n^\sigma \exp(\frac{t}{4} \log^2 N)} }[/math]) that the summand is decreasing for [math]\displaystyle{ 1 \leq n \leq N }[/math], hence by the integral test one has

[math]\displaystyle{ S_{\sigma,t}(N) \leq \sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \int_{N_0}^N \frac{1}{a^{\sigma + \frac{t}{4} \log \frac{N^2}{a}}}\ da. }[/math]

Making the change of variables [math]\displaystyle{ a = e^u }[/math], the right-hand side becomes

[math]\displaystyle{ \sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \int_{\log N_0}^{\log N} \exp( (1-\sigma) u + \frac{t}{4} (u^2 - 2u \log N) )\ du. }[/math]

The expression [math]\displaystyle{ (1-\sigma) u + \frac{t}{4} (u^2 - 2u \log N) }[/math] is convex in [math]\displaystyle{ u }[/math], and is thus bounded by the maximum of its values at the endpoints [math]\displaystyle{ u = \log N_0, \log N }[/math]; thus

[math]\displaystyle{ \exp( (1-\sigma) u + \frac{t}{4} (u^2 - 2u \log N) ) \leq \max( N_0^{1-\sigma - \frac{t}{4} \log \frac{N^2}{N_0}}, N^{1-\sigma - \frac{t}{4} \log N} ). }[/math]

The claim follows. [math]\displaystyle{ \Box }[/math]

Thus for instance if [math]\displaystyle{ \sigma = 0.7 }[/math], [math]\displaystyle{ t = 0.4 }[/math], and [math]\displaystyle{ N \geq N_0 = 2000 }[/math], one has

[math]\displaystyle{ S_{0.7, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.7 + 0.1 \log \frac{N^2}{n}}} + \max( 2000^{0.3 - 0.1 \log \frac{N^2}{2000}}, N^{0.3 - 0.1 \log N}) \log \frac{N}{2000}. }[/math]

One can compute numerically that the second term on the RHS is at most 0.0087, thus

[math]\displaystyle{ S_{0.7, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.7 + 0.1 \log \frac{N^2}{n}}} + 0.0087 }[/math]

for all [math]\displaystyle{ N \geq 2000 }[/math]. In particular

[math]\displaystyle{ S_{0.7, 0.4}(N) \leq S_{0.7, 0.4}(2000) + 0.0087 \leq 1.706. }[/math]

Similarly one has

[math]\displaystyle{ S_{0.3, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.3 + 0.1 \log \frac{N^2}{n}}} + \max( 2000^{0.7 - 0.1 \log \frac{N^2}{2000}}, N^{0.7 - 0.1 \log N}) \log \frac{N}{2000}. }[/math]

The second term can be shown to be at most [math]\displaystyle{ 0.253 }[/math], thus

[math]\displaystyle{ S_{0.3, 0.4}(N) \leq S_{0.3, 0.4}(2000) + 0.253 \leq 3.469 }[/math]

for all [math]\displaystyle{ N \geq 2000 }[/math].

Evaluating many sums

Let [math]\displaystyle{ N }[/math] be a natural number. For any complex numbers [math]\displaystyle{ z,w }[/math], we define the quantity

[math]\displaystyle{ F_N(z,w) := \sum_{n=1}^N n^{-z + w \log n}. }[/math]

In particular, the function [math]\displaystyle{ f_t(x+iy) }[/math] in the writeup has the form

[math]\displaystyle{ f_t(x+iy) = F_N( \frac{1+y-ix}{2} + \frac{t}{2} \alpha(\frac{1+y-ix}{2}), \frac{t}{4} ) + \gamma \overline{F_N( \frac{1-y-ix}{2} + \frac{t}{2} \alpha(\frac{1-y-ix}{2}), \frac{t}{4} )} }[/math]

It is thus of interest to efficiently evaluate [math]\displaystyle{ F_N(z,w) }[/math] for multiple different values of [math]\displaystyle{ z,w }[/math]. We will be particularly interested in the regime where [math]\displaystyle{ w=O(1) }[/math] and [math]\displaystyle{ z = z_0 + \zeta }[/math] for some [math]\displaystyle{ \zeta = O(1) }[/math] and some fixed [math]\displaystyle{ z_0 }[/math] (e.g. [math]\displaystyle{ z_0 = \frac{1-iX}{2} }[/math], thus

[math]\displaystyle{ F_N(z_0+\zeta, w) = \sum_{n=1}^N n^{-z_0} n^{-\zeta + w \log n}. }[/math]

If one were to naively evaluate [math]\displaystyle{ F_N(-\frac{iX}{2}+\zeta, w) }[/math] at [math]\displaystyle{ M }[/math] different values of [math]\displaystyle{ (z,w) }[/math], this would require about [math]\displaystyle{ O(NM) }[/math] operations. We now seek to use fewer operations to perform these evaluations, at the cost of some accuracy.

We can partition the interval [math]\displaystyle{ \{1,\dots,N\} }[/math] into an initial segment [math]\displaystyle{ \{1,\dots,N_0\} }[/math] and about [math]\displaystyle{ O(N/H) }[/math] segments of the form [math]\displaystyle{ \{ N_i - H/2, \dots, N_i + H/2\} }[/math] for various [math]\displaystyle{ N_i }[/math]. This lets us split

[math]\displaystyle{ F_N(z_0+\zeta, w) = F_{N_0}(-\frac{iX}{2}+\zeta, w) + \sum_i \sum_{-H/2 \leq h \leq H/2} (N_i + h)^{-z_0} \exp( - \zeta \log(N_i+h) + w \log^2(N_i+h) ). }[/math]

Writing [math]\displaystyle{ \log(N_i + h) = \log(N_i) + \varepsilon_{i,h} }[/math], where [math]\displaystyle{ \varepsilon_{i,h} := \log(1 + \frac{h}{N_i}) }[/math], we thus have

[math]\displaystyle{ F_N(z_0+\zeta, w) = F_{N_0}(z_0+\zeta, w) + \sum_i \sum_{-H/2 \leq h \leq H/2} (N_i + h)^{-z_0} \exp( A_i(\zeta,w) + B_i(\zeta,w) \varepsilon_{i,h} + w \varepsilon_{i,h}^2 ) }[/math]

where

[math]\displaystyle{ A_i(\zeta,w) := - \zeta \log(N_i) + w \log^2(N_i) }[/math]

and

[math]\displaystyle{ B_i(\zeta,w) := - \zeta + 2 w \log N_i. }[/math]

From Taylor's theorem with remainder, we have

[math]\displaystyle{ \exp( a ) = \sum_{j=0}^T \frac{a^j}{j!} + O_{\leq}( \frac{|a|^{T+1}}{(T+1)!} \exp(|a|) ) }[/math]

and hence

[math]\displaystyle{ F_N(z_0+\zeta, w) = F_{N_0}(z_0+\zeta, w) + \sum_i \sum_{-H/2 \leq h \leq H/2} (N_i + h)^{-z_0} \exp( A_i(\zeta,w) ) \sum_{j=0}^T \frac{1}{j!} (B_i(\zeta,w) \varepsilon_{i,h} + w \varepsilon_{i,h}^2)^j + O_{\leq}( E ) }[/math]

where [math]\displaystyle{ E }[/math] is the error term

[math]\displaystyle{ \sum_i \sum_{-H/2 \leq h \leq H/2} (n_0+h)^{-\mathrm{Re}(z_0)} \exp( \mathrm{Re} A_i(\zeta,w) ) \frac{|B_i(\zeta,w) \varepsilon_{i,h} + w \varepsilon_{i,h}^2|^{T+1}}{(T+1)!} \exp( |B_i(\zeta,w) \varepsilon_{i,h} + w \varepsilon_{i,h}^2| ). }[/math]

By binomial expansion, we then have

[math]\displaystyle{ F_N(z_0+\zeta, w) = F_{N_0}(z_0+\zeta, w) + \sum_i \sum_{-H/2 \leq h \leq H/2} (N_i + h)^{-z_0} \exp( A_i(\zeta,w) ) \sum_{j_1,j_2 \geq 0: j_1+j_2 \leq T} \frac{1}{j_1! j_2!} (B_i(\zeta,w) \varepsilon_{i,h})^{j_1} (w \varepsilon_{i,h}^2)^{j_2} + O_{\leq}( E ) }[/math]

which we can rearrange as

[math]\displaystyle{ F_N(z_0+\zeta, w) = F_{N_0}(z_0+\zeta, w) + \sum_i \sum_{j=0}^{2T} \beta_{i,j,h} \sigma_{i,j}(\zeta,w)+ O_{\leq}( E ) }[/math]

where

[math]\displaystyle{ \beta_{i,j,h} := \sum_{-H/2 \leq h \leq H/2} (N_i + h)^{-z_0} \varepsilon_{i,h}^j }[/math]

and

[math]\displaystyle{ \sigma_{i,j}(\zeta,w) := \sum_{j_1,j_2 \geq 0: j_1+2j_2 = j; j_1+j_2 \leq T} \frac{1}{j_1! j_2!} B_i(\zeta,w)^{j_1} w^{j_2}. }[/math]

The point is that it only requires [math]\displaystyle{ O( \frac{N}{H} T H ) }[/math] calculations to compute the [math]\displaystyle{ \beta_{i,j,h} }[/math], and [math]\displaystyle{ O( \frac{N}{H} T M ) }[/math] calculations to compute the [math]\displaystyle{ \sigma_{i,j}(\zeta,w) }[/math], so the total computation time is now

[math]\displaystyle{ O( N_0 M + \frac{N}{H} T H + \frac{N}{H} T M + \frac{N}{H} T M ) = O( NM ( \frac{N_0}{N} + \frac{T}{M} + \frac{T}{H} ) ) }[/math]

which can be a significant speedup over [math]\displaystyle{ O(NM) }[/math] when [math]\displaystyle{ N_0 \ll N }[/math], [math]\displaystyle{ T \ll M }[/math], and [math]\displaystyle{ T \ll H }[/math].

Now we control the error term [math]\displaystyle{ E }[/math]. From the concavity of the logarithm we have

[math]\displaystyle{ |\varepsilon_{i,h}| \leq |\varepsilon_{i,-H/2}| = \log \frac{N_i}{N_i-H/2} \leq \log(1 + \frac{H}{2N_0}) }[/math]

and

[math]\displaystyle{ |B_i(\zeta,w)| \leq |\zeta| + 2 |w| \log N }[/math]

and hence

[math]\displaystyle{ E \leq \frac{\delta^{T+1}}{(T+1)!} \exp( \delta) \sum_i \exp( \mathrm{Re} A_i(\zeta,w) ) \sum_{-H/2 \leq h \leq H/2} (N_i+h)^{-\mathrm{Re} z_0} }[/math]

where

[math]\displaystyle{ \delta := (|\zeta| + 2 |w| \log N) \log(1+\frac{H}{2N_0}) + |w| \log^2(1+\frac{H}{2N_0}). }[/math]

Euler2 mollifier in the toy model

The toy version of preventing [math]\displaystyle{ H_t(x+iy) }[/math] from vanishing is that of establishing the inequality

[math]\displaystyle{ |\sum_{n=1}^N \frac{1}{n^{\frac{1+y-ix}{2}+\frac{t}{4} \log \frac{N^2}{n} - \frac{\pi i t}{8}}}| \gt N^{-y} |\sum_{n=1}^N \frac{1}{n^{\frac{1-y-ix}{2}+\frac{t}{4} \log \frac{N^2}{n} - \frac{\pi i t}{8}}}|. }[/math]

Direct application of the triangle inequality lets us do this if [math]\displaystyle{ S \lt 2 }[/math], where S is the sum

[math]\displaystyle{ S := \sum_{n=1}^N \frac{1}{n^{\frac{1+y}{2}+\frac{t}{4} \log \frac{N^2}{n}}} + \frac{N^{-y}}{n^{\frac{1-y}{2}+\frac{t}{4} \log \frac{N^2}{n}}}. }[/math]

One can estimate S using the estimate in the first section of this web page.

Now we use a Euler2 mollifier. The lemma here is

Lemma Let [math]\displaystyle{ a_1,\dots,a_N }[/math] be complex numbers, and let [math]\displaystyle{ b_2 }[/math] be a number such that whenever [math]\displaystyle{ 1 \leq n \leq N }[/math] is even, [math]\displaystyle{ b_n a_{n/2} }[/math] lies on the line segment [math]\displaystyle{ \{ \theta a_n: 0 \leq \theta \leq 1\} }[/math] connecting 0 with [math]\displaystyle{ a_n }[/math]. Then we have the lower bound

[math]\displaystyle{ |1-b_2| |\sum_{n=1}^N a_n| \geq 2 |a_1| - (1-|b_2|) \sum_{n=1}^N |a_n| - 2 |b_2| \sum_{N/2 \lt n \leq N} |a_n| }[/math]

and the upper bound

[math]\displaystyle{ |1-b_2| |\sum_{n=1}^N a_n| \leq (1-|b_2|) \sum_{n=1}^N |a_n| + 2 |b_2| \sum_{N/2 \lt n \leq N} |a_n|. }[/math]

Proof The left-hand side can be written as

[math]\displaystyle{ |\sum_{n=1}^{2N} (1_{n \leq N} a_n - 1_{2|n} a_{n/2} b_2)|. }[/math]

By the triangle inequality, this is bounded above by

[math]\displaystyle{ \sum_{n=1}^{2N} |1_{n \leq N} a_n - 1_{2|n} a_{n/2} b_2| }[/math]

and below by

[math]\displaystyle{ 2 |a_1| - \sum_{n=1}^{2N} |1_{n \leq N} a_n - 1_{2|n} a_{n/2} b_2|. }[/math]

We have

[math]\displaystyle{ \sum_{n=1}^{2N} |1_{n \leq N} a_n - 1_{2|n} a_{n/2} b_2| = \sum_{n=1}^N |a_n| - 1_{2|n} |a_{n/2}| |b_2| + \sum_{n=N+1}^{2N} 1_{2|n} |a_{n/2}| |b_2| }[/math]

which we can rearrange as

[math]\displaystyle{ (1 - |b_2|) \sum_{n=1}^N |a_n| + 2 |b_2| \sum_{N/2 \lt n \leq N} |a_n| }[/math]

and the claim follows.

We apply this lemma with [math]\displaystyle{ a_n = \frac{1}{n^{\frac{1 \pm y-ix}{2}+\frac{t}{4} \log \frac{N^2}{n} - \frac{\pi i t}{8}}} }[/math] and [math]\displaystyle{ b_2 = \frac{1}{2^{\frac{1+y-ix}{2}+\frac{t}{4} \log \frac{N^2}{2} - \frac{\pi i t}{8}}} }[/math]. The hypotheses of the lemma are easily verified, and we conclude that

[math]\displaystyle{ |1-b_2| |\sum_{n=1}^N \frac{1}{n^{\frac{1+y-ix}{2}+\frac{t}{4} \log \frac{N^2}{n} - \frac{\pi i t}{8}}}| \geq 2 - (1-|b_2|) \sum_{n=1}^N \frac{1}{n^{\frac{1+y}{2}+\frac{t}{4} \log \frac{N^2}{n}}} - 2 |b_2| \sum_{N/2 \lt n \leq N} \frac{1}{n^{\frac{1+y}{2}+\frac{t}{4} \log \frac{N^2}{n}}} }[/math]

and

[math]\displaystyle{ |1-b_2| |\sum_{n=1}^N \frac{1}{n^{\frac{1-y-ix}{2}+\frac{t}{4} \log \frac{N^2}{n} - \frac{\pi i t}{8}}}| \leq (1-|b_2|) \sum_{n=1}^N \frac{1}{n^{\frac{1-y}{2}+\frac{t}{4} \log \frac{N^2}{n}}} + 2 |b_2| \sum_{N/2 \lt n \leq N} \frac{1}{n^{\frac{1-y}{2}+\frac{t}{4} \log \frac{N^2}{n}}}. }[/math]

This leads to a modified criterion

[math]\displaystyle{ (1-|b_2|) S + 2 |b_2| \sum_{N/2 \lt n \leq N} \frac{1}{n^{\frac{1+y}{2}+\frac{t}{4} \log \frac{N^2}{n}}} + \frac{N^{-y}}{n^{\frac{1-y}{2}+\frac{t}{4} \log \frac{N^2}{n}}}) \lt 2. }[/math]

We gain a factor of [math]\displaystyle{ (1 - |b_2|) }[/math] on the main term, but pick up an additional tail term summing over [math]\displaystyle{ N/2 \lt n \leq N }[/math]. This tail term should be small for N large. The summand is monotone decreasing in N so we can majorise it by N/2 times the value at N/2, thus we obtain the simplified criterion

[math]\displaystyle{ (1 - |b_2|) S + N |b_2| \frac{1 + 2^{-y}}{(N/2)^{\frac{1+y}{2}+\frac{t}{4} \log(2N)}} \lt 2. }[/math]