Zero-free regions: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
No edit summary
No edit summary
 
(26 intermediate revisions by 2 users not shown)
Line 1: Line 1:
The table below lists various regions of the <math>(t,y,x)</math> parameter space where <math>H_t(x+iy)</math> is known to be non-zero.  In some cases the parameter
The table below lists various regions of the <math>(t,y,x)</math> parameter space where <math>H_t(x+iy)</math> is known to be non-zero.  In some cases the parameter
:<math> N := \lfloor \sqrt{\frac{x}{4\pi} + \frac{t}{16}} \rfloor</math>
:<math> N := \lfloor \sqrt{\frac{x}{4\pi} + \frac{t}{16}} \rfloor</math>
is used.
is used instead of <math>x</math>.  The mesh evaluation techniques also require rigorous upper bounds on derivatives.  In some cases the spacing of the mesh is fixed; in other cases it is adaptive based on the current value of the evaluation and on the derivative bound.




Line 14: Line 14:
| [https://pure.tue.nl/ws/files/1769368/597490.pdf De Bruijn]
| [https://pure.tue.nl/ws/files/1769368/597490.pdf De Bruijn]
| Theorem 13 of [https://pure.tue.nl/ws/files/1769368/597490.pdf de Bruijn]
| Theorem 13 of [https://pure.tue.nl/ws/files/1769368/597490.pdf de Bruijn]
|  
| Proves <math>\Lambda \leq 1/2</math>.
|-
| 2004
| 0
| <math>y>0</math>
| <math>0 \leq x \leq 4.95 \times 10^{11}</math>
| [http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf Gourdon-Demichel]
| Numerical verification of RH & Riemann-von Mangoldt formula
| Results have not been independently verified
|-
|-
| 2009
| 2009
Line 22: Line 30:
| [https://pure.tue.nl/ws/files/1769368/597490.pdf Ki-Kim-Lee]
| [https://pure.tue.nl/ws/files/1769368/597490.pdf Ki-Kim-Lee]
| Theorem 1.3 of [https://pure.tue.nl/ws/files/1769368/597490.pdf Ki-Kim-Lee]
| Theorem 1.3 of [https://pure.tue.nl/ws/files/1769368/597490.pdf Ki-Kim-Lee]
| <math>C(t)</math> is not given explicitly.
| <math>C(t)</math> is not given explicitly. Also they show <math>\Lambda < 1/2</math>.
|-
| 2017
| 0
| <math>y>0</math>
| <math>0 \leq x \leq 6.1 \times 10^{10}</math>
| [http://www.ams.org/journals/mcom/2017-86-307/S0025-5718-2017-03198-7/ Platt]
| Numerical verification of the Riemann hypothesis
|
|-
|-
| Mar 7 2018
| Mar 7 2018
Line 95: Line 111:
| Mesh evaluation of <math>H_t</math>
| Mesh evaluation of <math>H_t</math>
|
|
|-
| Mar 23 2018
| <math>t > 0</math>
| <math>y > 0</math>
| <math>x > \exp(C/t)</math>
| [https://terrytao.wordpress.com/2018/03/18/polymath15-sixth-thread-the-test-problem-and-beyond/#comment-494201 Tao]
| Analytic bounds on <math>A^{eff}+B^{eff} / B^{eff}_0</math> and error terms; argument principle
| <math>C</math> is in principle an explicit absolute constant
|-
|-
| Mar 27 2018
| Mar 27 2018
Line 101: Line 125:
| <math>7 \leq N \leq 300</math> (<math>615 \leq x \leq 1.13 \times 10^6</math>)
| <math>7 \leq N \leq 300</math> (<math>615 \leq x \leq 1.13 \times 10^6</math>)
| [https://terrytao.wordpress.com/2018/03/18/polymath15-sixth-thread-the-test-problem-and-beyond/#comment-494859 KM]
| [https://terrytao.wordpress.com/2018/03/18/polymath15-sixth-thread-the-test-problem-and-beyond/#comment-494859 KM]
| Mesh evaluation of <math>A^{eff}+B^{eff} / B^{eff}_0</math> and upper bounds on error terms
| Mesh evaluation of <math>A^{eff}+B^{eff} / B^{eff}_0</math> and upper bounds on error terms; argument principle
|
|
|-
|-
Line 109: Line 133:
| <math>0 \leq x \leq 1000</math>
| <math>0 \leq x \leq 1000</math>
| [https://terrytao.wordpress.com/2018/03/18/polymath15-sixth-thread-the-test-problem-and-beyond/#comment-494867 Anonymous]
| [https://terrytao.wordpress.com/2018/03/18/polymath15-sixth-thread-the-test-problem-and-beyond/#comment-494867 Anonymous]
| Mesh evaluation of <math>H_t</math>
| Mesh evaluation of <math>H_t</math>; argument principle
| Completes proof of <math>\Lambda \leq 0.48</math>!
| Completes proof of <math>\Lambda \leq 0.48</math>!
|-
| Mar 31 2018
| <math>0 \leq t \leq 0.4</math>
| <math>0.4 \leq y \leq 1</math>
| <math>10^6 \leq x \leq 10^6 + 1 </math>
| [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/#comment-495062 KM]
| Mesh evaluation of <math>A^{eff}+B^{eff} / B^{eff}_0</math> and upper bounds on error terms; argument principle
|
|-
| Mar 31 2018
| 0.4
| <math>0.4 \leq y \leq 0.45</math>
| <math>0 \leq x \leq 3000</math>
| [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/#comment-495065 Rudolph]
| Third approach to <math>H_t</math>; argument principle
|
|-
| Apr 6 2018
| <math>0 \leq t \leq 0.2</math>
| <math>0.4 \leq y \leq 1</math>
| <math>5 \times 10^9 \leq x \leq 5 \times 10^9+1</math>
| [https://terrytao.wordpress.com/wp-admin/edit-comments.php KM, Rudolph, David, Anonymous]
| Mesh evaluation of <math>A^{eff}+B^{eff} / B^{eff}_0</math> and upper bounds on error terms; argument principle
|
|-
| Apr 6 2018
| 0.2
| 0.4
| <math>N \geq 3 \times 10^6 (x \geq 1.13 \times 10^{12})</math>
| [https://terrytao.wordpress.com/wp-admin/edit-comments.php KM]
| Analytic lower bounds on <math>A^{eff}+B^{eff} / B^{eff}_0</math> and upper bounds on error terms
|
|-
| Apr 7 2018
| 0.29
| <math>y \geq 0.29</math>
| <math>N \geq 19947</math>
| [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/#comment-495487 Anonymous]
| Triangle inequality bound on <math>A^{eff}+B^{eff} / B^{eff}_0</math> and upper bounds on error terms
| Would in principle show <math>\Lambda \leq 0.33205</math> if the matching barrier could be established
|-
| Apr 9 2018
| 0.2
| <math>y \geq 0.4</math>
| <math>N \geq 3 \times 10^5</math>
| [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/#comment-495723 Tao]
| Triangle inequality bound on <math>A^{eff}+B^{eff} / B^{eff}_0</math> and upper bounds on error terms
|
|-
| Apr 10 2018
| 0.2
| <math>y \geq 0.4</math>
| <math>4 \times 10^4 \leq N \leq 10^5; 100|N</math>
| [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/#comment-495841 KM]
| Euler2 mollifier and triangle inequality bounds on <math>A^{eff}+B^{eff} / B^{eff}_0</math>
| Error terms not estimated but look well within acceptable limits
|-
| Apr 12 2018
| 0.2
| <math>y \geq 0.4</math>
| <math>4 \times 10^4 \leq N \leq 3 \times 10^5</math>
| [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/#comment-495981 Anonymous]
| Euler2 mollifier and triangle inequality bounds on <math>A^{eff}+B^{eff} / B^{eff}_0</math>
| Error terms not estimated but look well within acceptable limits
|-
| Apr 12 2018
| 0.2
| <math>y \geq 0.4</math>
| <math>19947 \leq N \leq 4 \times 10^4</math>
| [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/#comment-495981 Rudolph]
| Euler3 mollifier and triangle inequality bounds on <math>A^{eff}+B^{eff} / B^{eff}_0</math>
| Error terms not estimated but look well within acceptable limits
|-
| Apr 16 2018
| 0.2
| <math>y \geq 0.4</math>
| <math>19947 \leq N \leq 3 \times 10^5</math>
| [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/#comment-496410 Rudolph]
| Estimating error terms in previous two ranges
| Completes proof of <math>\Lambda \leq 0.28</math>!
|-
| Apr 28 2018
| <math>0 \leq t \leq 0.2</math>
| <math>0.2 \leq y \leq 1</math>
| <math>6 \times 10^{10} + 2099 \leq x \leq 6 \times 10^{10} + 2100</math>
| [https://terrytao.wordpress.com/2018/04/17/polymath15-eighth-thread-going-below-0-28/#comment-497463 KM] / [https://terrytao.wordpress.com/2018/04/17/polymath15-eighth-thread-going-below-0-28/#comment-497481 Rudolph]
| Taylor series evaluation of <math>A^{eff}+B^{eff} / B^{eff}_0</math>
|
|-
| May 1 2018
| <math>0 \leq t \leq 0.2</math>
| <math>0.2 \leq y \leq 1</math>
| <math>6 \times 10^{10} + 83952 - 1/2\leq x \leq 6 \times 10^{10} + 83952 + 1/2</math>
| [https://terrytao.wordpress.com/2018/04/17/polymath15-eighth-thread-going-below-0-28/#comment-497587 KM]
| Taylor series evaluation of <math>A^{eff}+B^{eff} / B^{eff}_0</math>
| Barrier chosen using Euler product heuristics to maximise lower bound
|-
| May 1 2018
| 0.2
| 0.2
| <math>69098 \leq N \leq 1.5 \times 10^6</math>
| [https://terrytao.wordpress.com/2018/04/17/polymath15-eighth-thread-going-below-0-28/#comment-497617 Rudolph]
| Euler5 mollifier and triangle inequality bounds on <math>A^{eff}+B^{eff} / B^{eff}_0</math>; only updating a few terms at a time when moving from <math>N</math> to <math>N+1</math>
| This should establish <math>\Lambda \leq 0.22</math>!
|}
|}
[[Category:Polymath15]]

Latest revision as of 16:44, 10 May 2018

The table below lists various regions of the [math]\displaystyle{ (t,y,x) }[/math] parameter space where [math]\displaystyle{ H_t(x+iy) }[/math] is known to be non-zero. In some cases the parameter

[math]\displaystyle{ N := \lfloor \sqrt{\frac{x}{4\pi} + \frac{t}{16}} \rfloor }[/math]

is used instead of [math]\displaystyle{ x }[/math]. The mesh evaluation techniques also require rigorous upper bounds on derivatives. In some cases the spacing of the mesh is fixed; in other cases it is adaptive based on the current value of the evaluation and on the derivative bound.


Date [math]\displaystyle{ t }[/math] [math]\displaystyle{ y }[/math] [math]\displaystyle{ x }[/math] From Method Comments
1950 [math]\displaystyle{ t \geq 0 }[/math] [math]\displaystyle{ y \gt \sqrt{\max(1-2t,0)} }[/math] Any De Bruijn Theorem 13 of de Bruijn Proves [math]\displaystyle{ \Lambda \leq 1/2 }[/math].
2004 0 [math]\displaystyle{ y\gt 0 }[/math] [math]\displaystyle{ 0 \leq x \leq 4.95 \times 10^{11} }[/math] Gourdon-Demichel Numerical verification of RH & Riemann-von Mangoldt formula Results have not been independently verified
2009 [math]\displaystyle{ t \gt 0 }[/math] [math]\displaystyle{ y \gt 0 }[/math] [math]\displaystyle{ x \geq C(t) }[/math] Ki-Kim-Lee Theorem 1.3 of Ki-Kim-Lee [math]\displaystyle{ C(t) }[/math] is not given explicitly. Also they show [math]\displaystyle{ \Lambda \lt 1/2 }[/math].
2017 0 [math]\displaystyle{ y\gt 0 }[/math] [math]\displaystyle{ 0 \leq x \leq 6.1 \times 10^{10} }[/math] Platt Numerical verification of the Riemann hypothesis
Mar 7 2018 0.4 0.4 [math]\displaystyle{ N \geq 2000 }[/math] ([math]\displaystyle{ x \geq 5.03 \times 10^7 }[/math]) Tao Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and analytic upper bounds on error terms Can be extended to the range [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math]
Mar 10 2018 0.4 0.4 [math]\displaystyle{ 151 \leq N \leq 300 }[/math] ([math]\displaystyle{ 2.87 \times 10^5 \leq x \leq 1.13 \times 10^6 }[/math]) KM Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Mar 11 2018 0.4 0.4 [math]\displaystyle{ 300 \leq N \leq 2000 }[/math] ([math]\displaystyle{ 1.13 \times 10^6 \leq x \leq 5.03 \times 10^7 }[/math]) KM Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms Should extend to the range [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math]
Mar 11 2018 0.4 0.4 [math]\displaystyle{ 20 \leq N \leq 150 }[/math] ([math]\displaystyle{ 5026 \leq x \leq 2.87 \times 10^5 }[/math]) Rudolph & KM Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Mar 11 2018 0.4 0.4 [math]\displaystyle{ 11 \leq N \leq 19 }[/math] ([math]\displaystyle{ 1520 \leq x \leq 5026 }[/math]) Rudolph & KM Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Mar 22 2018 0.4 0.4 [math]\displaystyle{ x \leq 1000 }[/math] Anon/David/KM Mesh evaluation of [math]\displaystyle{ H_t }[/math]
Mar 22 2018 0.4 0.4 [math]\displaystyle{ 1000 \leq x \leq 1600 }[/math] Rudolph Mesh evaluation of [math]\displaystyle{ H_t }[/math]
Mar 22 2018 0.4 0.4 [math]\displaystyle{ 8 \leq N \leq 10 }[/math] ([math]\displaystyle{ 803 \leq x \leq 1520 }[/math]) Rudolph Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Mar 23 2018 0.4 0.4 [math]\displaystyle{ 20 \leq x \leq 1000 }[/math] Anonymous Mesh evaluation of [math]\displaystyle{ H_t }[/math]
Mar 23 2018 [math]\displaystyle{ t \gt 0 }[/math] [math]\displaystyle{ y \gt 0 }[/math] [math]\displaystyle{ x \gt \exp(C/t) }[/math] Tao Analytic bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and error terms; argument principle [math]\displaystyle{ C }[/math] is in principle an explicit absolute constant
Mar 27 2018 0.4 [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] [math]\displaystyle{ 7 \leq N \leq 300 }[/math] ([math]\displaystyle{ 615 \leq x \leq 1.13 \times 10^6 }[/math]) KM Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms; argument principle
Mar 27 2018 0.4 [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] [math]\displaystyle{ 0 \leq x \leq 1000 }[/math] Anonymous Mesh evaluation of [math]\displaystyle{ H_t }[/math]; argument principle Completes proof of [math]\displaystyle{ \Lambda \leq 0.48 }[/math]!
Mar 31 2018 [math]\displaystyle{ 0 \leq t \leq 0.4 }[/math] [math]\displaystyle{ 0.4 \leq y \leq 1 }[/math] [math]\displaystyle{ 10^6 \leq x \leq 10^6 + 1 }[/math] KM Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms; argument principle
Mar 31 2018 0.4 [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] [math]\displaystyle{ 0 \leq x \leq 3000 }[/math] Rudolph Third approach to [math]\displaystyle{ H_t }[/math]; argument principle
Apr 6 2018 [math]\displaystyle{ 0 \leq t \leq 0.2 }[/math] [math]\displaystyle{ 0.4 \leq y \leq 1 }[/math] [math]\displaystyle{ 5 \times 10^9 \leq x \leq 5 \times 10^9+1 }[/math] KM, Rudolph, David, Anonymous Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms; argument principle
Apr 6 2018 0.2 0.4 [math]\displaystyle{ N \geq 3 \times 10^6 (x \geq 1.13 \times 10^{12}) }[/math] KM Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Apr 7 2018 0.29 [math]\displaystyle{ y \geq 0.29 }[/math] [math]\displaystyle{ N \geq 19947 }[/math] Anonymous Triangle inequality bound on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms Would in principle show [math]\displaystyle{ \Lambda \leq 0.33205 }[/math] if the matching barrier could be established
Apr 9 2018 0.2 [math]\displaystyle{ y \geq 0.4 }[/math] [math]\displaystyle{ N \geq 3 \times 10^5 }[/math] Tao Triangle inequality bound on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Apr 10 2018 0.2 [math]\displaystyle{ y \geq 0.4 }[/math] [math]\displaystyle{ 4 \times 10^4 \leq N \leq 10^5; 100|N }[/math] KM Euler2 mollifier and triangle inequality bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] Error terms not estimated but look well within acceptable limits
Apr 12 2018 0.2 [math]\displaystyle{ y \geq 0.4 }[/math] [math]\displaystyle{ 4 \times 10^4 \leq N \leq 3 \times 10^5 }[/math] Anonymous Euler2 mollifier and triangle inequality bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] Error terms not estimated but look well within acceptable limits
Apr 12 2018 0.2 [math]\displaystyle{ y \geq 0.4 }[/math] [math]\displaystyle{ 19947 \leq N \leq 4 \times 10^4 }[/math] Rudolph Euler3 mollifier and triangle inequality bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] Error terms not estimated but look well within acceptable limits
Apr 16 2018 0.2 [math]\displaystyle{ y \geq 0.4 }[/math] [math]\displaystyle{ 19947 \leq N \leq 3 \times 10^5 }[/math] Rudolph Estimating error terms in previous two ranges Completes proof of [math]\displaystyle{ \Lambda \leq 0.28 }[/math]!
Apr 28 2018 [math]\displaystyle{ 0 \leq t \leq 0.2 }[/math] [math]\displaystyle{ 0.2 \leq y \leq 1 }[/math] [math]\displaystyle{ 6 \times 10^{10} + 2099 \leq x \leq 6 \times 10^{10} + 2100 }[/math] KM / Rudolph Taylor series evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math]
May 1 2018 [math]\displaystyle{ 0 \leq t \leq 0.2 }[/math] [math]\displaystyle{ 0.2 \leq y \leq 1 }[/math] [math]\displaystyle{ 6 \times 10^{10} + 83952 - 1/2\leq x \leq 6 \times 10^{10} + 83952 + 1/2 }[/math] KM Taylor series evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] Barrier chosen using Euler product heuristics to maximise lower bound
May 1 2018 0.2 0.2 [math]\displaystyle{ 69098 \leq N \leq 1.5 \times 10^6 }[/math] Rudolph Euler5 mollifier and triangle inequality bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math]; only updating a few terms at a time when moving from [math]\displaystyle{ N }[/math] to [math]\displaystyle{ N+1 }[/math] This should establish [math]\displaystyle{ \Lambda \leq 0.22 }[/math]!