Zero-free regions: Difference between revisions
From Polymath Wiki
Jump to navigationJump to search
No edit summary |
No edit summary |
||
(9 intermediate revisions by 2 users not shown) | |||
Line 163: | Line 163: | ||
| 0.2 | | 0.2 | ||
| 0.4 | | 0.4 | ||
| <math>N \geq | | <math>N \geq 3 \times 10^6 (x \geq 1.13 \times 10^{12})</math> | ||
| [https://terrytao.wordpress.com/wp-admin/edit-comments.php KM] | | [https://terrytao.wordpress.com/wp-admin/edit-comments.php KM] | ||
| Analytic lower bounds on <math>A^{eff}+B^{eff} / B^{eff}_0</math> and upper bounds on error terms | | Analytic lower bounds on <math>A^{eff}+B^{eff} / B^{eff}_0</math> and upper bounds on error terms | ||
Line 189: | Line 189: | ||
| <math>4 \times 10^4 \leq N \leq 10^5; 100|N</math> | | <math>4 \times 10^4 \leq N \leq 10^5; 100|N</math> | ||
| [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/#comment-495841 KM] | | [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/#comment-495841 KM] | ||
| | | Euler2 mollifier and triangle inequality bounds on <math>A^{eff}+B^{eff} / B^{eff}_0</math> | ||
| Error terms not estimated but look well within acceptable limits | | Error terms not estimated but look well within acceptable limits | ||
|- | |- | ||
Line 195: | Line 195: | ||
| 0.2 | | 0.2 | ||
| <math>y \geq 0.4</math> | | <math>y \geq 0.4</math> | ||
| <math>4 \times 10^4 \leq N \leq 10^5 | | <math>4 \times 10^4 \leq N \leq 3 \times 10^5</math> | ||
| [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/#comment- | | [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/#comment-495981 Anonymous] | ||
| Euler mollifier and triangle inequality bounds on <math>A^{eff}+B^{eff} / B^{eff}_0</math> | | Euler2 mollifier and triangle inequality bounds on <math>A^{eff}+B^{eff} / B^{eff}_0</math> | ||
| | | Error terms not estimated but look well within acceptable limits | ||
|- | |||
| Apr 12 2018 | |||
| 0.2 | |||
| <math>y \geq 0.4</math> | |||
| <math>19947 \leq N \leq 4 \times 10^4</math> | |||
| [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/#comment-495981 Rudolph] | |||
| Euler3 mollifier and triangle inequality bounds on <math>A^{eff}+B^{eff} / B^{eff}_0</math> | |||
| Error terms not estimated but look well within acceptable limits | |||
|- | |||
| Apr 16 2018 | |||
| 0.2 | |||
| <math>y \geq 0.4</math> | |||
| <math>19947 \leq N \leq 3 \times 10^5</math> | |||
| [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/#comment-496410 Rudolph] | |||
| Estimating error terms in previous two ranges | |||
| Completes proof of <math>\Lambda \leq 0.28</math>! | |||
|- | |||
| Apr 28 2018 | |||
| <math>0 \leq t \leq 0.2</math> | |||
| <math>0.2 \leq y \leq 1</math> | |||
| <math>6 \times 10^{10} + 2099 \leq x \leq 6 \times 10^{10} + 2100</math> | |||
| [https://terrytao.wordpress.com/2018/04/17/polymath15-eighth-thread-going-below-0-28/#comment-497463 KM] / [https://terrytao.wordpress.com/2018/04/17/polymath15-eighth-thread-going-below-0-28/#comment-497481 Rudolph] | |||
| Taylor series evaluation of <math>A^{eff}+B^{eff} / B^{eff}_0</math> | |||
| | |||
|- | |||
| May 1 2018 | |||
| <math>0 \leq t \leq 0.2</math> | |||
| <math>0.2 \leq y \leq 1</math> | |||
| <math>6 \times 10^{10} + 83952 - 1/2\leq x \leq 6 \times 10^{10} + 83952 + 1/2</math> | |||
| [https://terrytao.wordpress.com/2018/04/17/polymath15-eighth-thread-going-below-0-28/#comment-497587 KM] | |||
| Taylor series evaluation of <math>A^{eff}+B^{eff} / B^{eff}_0</math> | |||
| Barrier chosen using Euler product heuristics to maximise lower bound | |||
|- | |||
| May 1 2018 | |||
| 0.2 | |||
| 0.2 | |||
| <math>69098 \leq N \leq 1.5 \times 10^6</math> | |||
| [https://terrytao.wordpress.com/2018/04/17/polymath15-eighth-thread-going-below-0-28/#comment-497617 Rudolph] | |||
| Euler5 mollifier and triangle inequality bounds on <math>A^{eff}+B^{eff} / B^{eff}_0</math>; only updating a few terms at a time when moving from <math>N</math> to <math>N+1</math> | |||
| This should establish <math>\Lambda \leq 0.22</math>! | |||
|} | |} | ||
[[Category:Polymath15]] | [[Category:Polymath15]] |
Latest revision as of 16:44, 10 May 2018
The table below lists various regions of the [math]\displaystyle{ (t,y,x) }[/math] parameter space where [math]\displaystyle{ H_t(x+iy) }[/math] is known to be non-zero. In some cases the parameter
- [math]\displaystyle{ N := \lfloor \sqrt{\frac{x}{4\pi} + \frac{t}{16}} \rfloor }[/math]
is used instead of [math]\displaystyle{ x }[/math]. The mesh evaluation techniques also require rigorous upper bounds on derivatives. In some cases the spacing of the mesh is fixed; in other cases it is adaptive based on the current value of the evaluation and on the derivative bound.
Date | [math]\displaystyle{ t }[/math] | [math]\displaystyle{ y }[/math] | [math]\displaystyle{ x }[/math] | From | Method | Comments |
---|---|---|---|---|---|---|
1950 | [math]\displaystyle{ t \geq 0 }[/math] | [math]\displaystyle{ y \gt \sqrt{\max(1-2t,0)} }[/math] | Any | De Bruijn | Theorem 13 of de Bruijn | Proves [math]\displaystyle{ \Lambda \leq 1/2 }[/math]. |
2004 | 0 | [math]\displaystyle{ y\gt 0 }[/math] | [math]\displaystyle{ 0 \leq x \leq 4.95 \times 10^{11} }[/math] | Gourdon-Demichel | Numerical verification of RH & Riemann-von Mangoldt formula | Results have not been independently verified |
2009 | [math]\displaystyle{ t \gt 0 }[/math] | [math]\displaystyle{ y \gt 0 }[/math] | [math]\displaystyle{ x \geq C(t) }[/math] | Ki-Kim-Lee | Theorem 1.3 of Ki-Kim-Lee | [math]\displaystyle{ C(t) }[/math] is not given explicitly. Also they show [math]\displaystyle{ \Lambda \lt 1/2 }[/math]. |
2017 | 0 | [math]\displaystyle{ y\gt 0 }[/math] | [math]\displaystyle{ 0 \leq x \leq 6.1 \times 10^{10} }[/math] | Platt | Numerical verification of the Riemann hypothesis | |
Mar 7 2018 | 0.4 | 0.4 | [math]\displaystyle{ N \geq 2000 }[/math] ([math]\displaystyle{ x \geq 5.03 \times 10^7 }[/math]) | Tao | Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and analytic upper bounds on error terms | Can be extended to the range [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] |
Mar 10 2018 | 0.4 | 0.4 | [math]\displaystyle{ 151 \leq N \leq 300 }[/math] ([math]\displaystyle{ 2.87 \times 10^5 \leq x \leq 1.13 \times 10^6 }[/math]) | KM | Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms | |
Mar 11 2018 | 0.4 | 0.4 | [math]\displaystyle{ 300 \leq N \leq 2000 }[/math] ([math]\displaystyle{ 1.13 \times 10^6 \leq x \leq 5.03 \times 10^7 }[/math]) | KM | Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms | Should extend to the range [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] |
Mar 11 2018 | 0.4 | 0.4 | [math]\displaystyle{ 20 \leq N \leq 150 }[/math] ([math]\displaystyle{ 5026 \leq x \leq 2.87 \times 10^5 }[/math]) | Rudolph & KM | Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms | |
Mar 11 2018 | 0.4 | 0.4 | [math]\displaystyle{ 11 \leq N \leq 19 }[/math] ([math]\displaystyle{ 1520 \leq x \leq 5026 }[/math]) | Rudolph & KM | Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms | |
Mar 22 2018 | 0.4 | 0.4 | [math]\displaystyle{ x \leq 1000 }[/math] | Anon/David/KM | Mesh evaluation of [math]\displaystyle{ H_t }[/math] | |
Mar 22 2018 | 0.4 | 0.4 | [math]\displaystyle{ 1000 \leq x \leq 1600 }[/math] | Rudolph | Mesh evaluation of [math]\displaystyle{ H_t }[/math] | |
Mar 22 2018 | 0.4 | 0.4 | [math]\displaystyle{ 8 \leq N \leq 10 }[/math] ([math]\displaystyle{ 803 \leq x \leq 1520 }[/math]) | Rudolph | Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms | |
Mar 23 2018 | 0.4 | 0.4 | [math]\displaystyle{ 20 \leq x \leq 1000 }[/math] | Anonymous | Mesh evaluation of [math]\displaystyle{ H_t }[/math] | |
Mar 23 2018 | [math]\displaystyle{ t \gt 0 }[/math] | [math]\displaystyle{ y \gt 0 }[/math] | [math]\displaystyle{ x \gt \exp(C/t) }[/math] | Tao | Analytic bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and error terms; argument principle | [math]\displaystyle{ C }[/math] is in principle an explicit absolute constant |
Mar 27 2018 | 0.4 | [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] | [math]\displaystyle{ 7 \leq N \leq 300 }[/math] ([math]\displaystyle{ 615 \leq x \leq 1.13 \times 10^6 }[/math]) | KM | Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms; argument principle | |
Mar 27 2018 | 0.4 | [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] | [math]\displaystyle{ 0 \leq x \leq 1000 }[/math] | Anonymous | Mesh evaluation of [math]\displaystyle{ H_t }[/math]; argument principle | Completes proof of [math]\displaystyle{ \Lambda \leq 0.48 }[/math]! |
Mar 31 2018 | [math]\displaystyle{ 0 \leq t \leq 0.4 }[/math] | [math]\displaystyle{ 0.4 \leq y \leq 1 }[/math] | [math]\displaystyle{ 10^6 \leq x \leq 10^6 + 1 }[/math] | KM | Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms; argument principle | |
Mar 31 2018 | 0.4 | [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] | [math]\displaystyle{ 0 \leq x \leq 3000 }[/math] | Rudolph | Third approach to [math]\displaystyle{ H_t }[/math]; argument principle | |
Apr 6 2018 | [math]\displaystyle{ 0 \leq t \leq 0.2 }[/math] | [math]\displaystyle{ 0.4 \leq y \leq 1 }[/math] | [math]\displaystyle{ 5 \times 10^9 \leq x \leq 5 \times 10^9+1 }[/math] | KM, Rudolph, David, Anonymous | Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms; argument principle | |
Apr 6 2018 | 0.2 | 0.4 | [math]\displaystyle{ N \geq 3 \times 10^6 (x \geq 1.13 \times 10^{12}) }[/math] | KM | Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms | |
Apr 7 2018 | 0.29 | [math]\displaystyle{ y \geq 0.29 }[/math] | [math]\displaystyle{ N \geq 19947 }[/math] | Anonymous | Triangle inequality bound on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms | Would in principle show [math]\displaystyle{ \Lambda \leq 0.33205 }[/math] if the matching barrier could be established |
Apr 9 2018 | 0.2 | [math]\displaystyle{ y \geq 0.4 }[/math] | [math]\displaystyle{ N \geq 3 \times 10^5 }[/math] | Tao | Triangle inequality bound on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms | |
Apr 10 2018 | 0.2 | [math]\displaystyle{ y \geq 0.4 }[/math] | [math]\displaystyle{ 4 \times 10^4 \leq N \leq 10^5; 100|N }[/math] | KM | Euler2 mollifier and triangle inequality bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] | Error terms not estimated but look well within acceptable limits |
Apr 12 2018 | 0.2 | [math]\displaystyle{ y \geq 0.4 }[/math] | [math]\displaystyle{ 4 \times 10^4 \leq N \leq 3 \times 10^5 }[/math] | Anonymous | Euler2 mollifier and triangle inequality bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] | Error terms not estimated but look well within acceptable limits |
Apr 12 2018 | 0.2 | [math]\displaystyle{ y \geq 0.4 }[/math] | [math]\displaystyle{ 19947 \leq N \leq 4 \times 10^4 }[/math] | Rudolph | Euler3 mollifier and triangle inequality bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] | Error terms not estimated but look well within acceptable limits |
Apr 16 2018 | 0.2 | [math]\displaystyle{ y \geq 0.4 }[/math] | [math]\displaystyle{ 19947 \leq N \leq 3 \times 10^5 }[/math] | Rudolph | Estimating error terms in previous two ranges | Completes proof of [math]\displaystyle{ \Lambda \leq 0.28 }[/math]! |
Apr 28 2018 | [math]\displaystyle{ 0 \leq t \leq 0.2 }[/math] | [math]\displaystyle{ 0.2 \leq y \leq 1 }[/math] | [math]\displaystyle{ 6 \times 10^{10} + 2099 \leq x \leq 6 \times 10^{10} + 2100 }[/math] | KM / Rudolph | Taylor series evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] | |
May 1 2018 | [math]\displaystyle{ 0 \leq t \leq 0.2 }[/math] | [math]\displaystyle{ 0.2 \leq y \leq 1 }[/math] | [math]\displaystyle{ 6 \times 10^{10} + 83952 - 1/2\leq x \leq 6 \times 10^{10} + 83952 + 1/2 }[/math] | KM | Taylor series evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] | Barrier chosen using Euler product heuristics to maximise lower bound |
May 1 2018 | 0.2 | 0.2 | [math]\displaystyle{ 69098 \leq N \leq 1.5 \times 10^6 }[/math] | Rudolph | Euler5 mollifier and triangle inequality bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math]; only updating a few terms at a time when moving from [math]\displaystyle{ N }[/math] to [math]\displaystyle{ N+1 }[/math] | This should establish [math]\displaystyle{ \Lambda \leq 0.22 }[/math]! |