Partitioning.tex: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
\section{Partitioning \texorpdfstring{$ | \section{Partitioning \texorpdfstring{$ab$}{ab}-insensitive sets} | ||
The last tool we need is the result described in Section~\ref{sec:outline-partition}; given the multidimensional DHJ($k-1$) theorem, we show that $ab$-insensitive subsets of $[k]^n$ can be almost completely partitioned into disjoint $d$-dimensional subspaces. | |||
\begin{theorem} \label{thm:partition} Let $\ | \begin{theorem} \label{thm:partition} Let $k \geq 3$, $d \geq 1$, $0 < \eta < 1/2$. Let $C \subseteq [k]^n$ be $ab$-insensitive on $I$, and assume | ||
\[ | \[ | ||
\abs{I} \geq m \bigl(k(k+d)\bigr)^m \ln(1/\eta), | |||
\] | \] | ||
where | where | ||
\[ | \[ | ||
m = | m = 2\mdhj{k-1}{\eta/4}{d}. | ||
\] | \] | ||
Then $ | Then $C$ can be partitioned into a collection $\calS$ of disjoint $d$-dimensional subspaces, along with an error set $E$ satisfying $\unif_k^{\ot n}(E) \leq \eta$. | ||
\end{theorem} | \end{theorem} | ||
\begin{proof} | \begin{proof} | ||
The proof proceeds in ``rounds'', $t = 1, 2, 3, \dots$. In each round, we remove some disjoint subspaces from $ | \noteryan{Maybe change all the $\unif_k^{\otimes n}$'s just to $\unif$'s, for typographical simplicity.} | ||
\begin{equation} \label{eqn: | The proof proceeds in ``rounds'', $t = 1, 2, 3, \dots$. In each round, we remove some disjoint subspaces from $C$ and put them into $\calS$; and, the set $I$ shrinks by $m$ coordinates. We will show that after the $t$th round, | ||
\ | \begin{equation} \label{eqn:C-shrinks} | ||
\unif_k^{\otimes n}(C) \leq \left(1 - \bigl(k(k+d)\bigr)^{-m}\right)^t. | |||
\end{equation} | \end{equation} | ||
We continue the process until $\ | We continue the process until $\unif_k^{\otimes n}(C) \leq \eta$, at which point we may stop and set $E = C$. Because of~\eqref{eqn:C-shrinks}, the process stops after at most $T = \bigl(k(k+d)\bigr)^m \ln(1/\eta)$ rounds. Since we insisted $\abs{I} \geq mT$ initially, the set $I$ never ``runs out of coordinates''. | ||
Suppose we are about to begin the $t$th round; hence, writing $\ | Suppose we are about to begin the $t$th round; hence, writing $\alpha = \unif_k^{\otimes n}(C)$ we have | ||
\[ | \[ | ||
\eta < \ | \eta < \alpha \leq \left(1 - \bigl(k(k+d)\bigr)^{-m}\right)^{t-1}. | ||
\] | \] | ||
The round begins by choosing an arbitrary $J \subseteq I$ with $ | The round begins by choosing an arbitrary $J \subseteq I$ with $\abs{J} = m$. We have | ||
\[ | \[ | ||
\ | \alpha = \Pr_{x \sim \unif_k^{\otimes n}}[x \in C] = \Ex_{y \sim \unif_k^{\otimes \barJ}}[\unif_k^{\otimes J}(C_y)], | ||
\] | \] | ||
where we have written $C_y = \{z \in [k]^J : (y,z) \in C\}$. Hence $\unif_k^{\otimes J}(C_y) \geq \alpha/2$ for at least a $\alpha/2$ probability mass of $y$'s (under $\unif_k^{\otimes \barJ}$); call these $y$'s ``good''. Since $J \subseteq I$ and $C$ is $ab$-insensitive on $I$, it follows that each $C_y$ is $ab$-insensitive on $J$. Since $\abs{J} = m = 2\mdhj{k-1}{(\eta/2)/2}{d} \geq 2\mdhj{k-1}{(\alpha/2)/2}{d}$, it follows from Proposition~\ref{prop:mdhj-insens} that for each good $y$ there must exist a $d$-dimensional subspace $\rho \subseteq C_y$. Since the number of $d$-dimensional subspaces in $[k]^m$ is at most $(k+d)^m$, there must exist a \emph{fixed} $d$-dimensional subspace $\rho_0 \subseteq [k]^J$ such that | |||
\begin{equation} \label{eqn: | \begin{equation} \label{eqn:C-mass-decr} | ||
\Pr_{y \sim \ | \Pr_{y \sim \unif_k^{\otimes \barJ}}[\rho_0 \subseteq C_y] \geq \frac{\alpha}{2(k+d)^m}. | ||
\end{equation} | \end{equation} | ||
Let $R \subseteq [k]^{\barJ}$ be the set of $y$'s with $\rho_0 \subseteq | Let $R \subseteq [k]^{\barJ}$ be the set of $y$'s with $\rho_0 \subseteq C_y$. Since $C$ is $ab$-insensitive on $I$, it is easy to see\noteryan{Honest.} that $R$ is $ab$-insensitive on $I \setminus J$. Thus $R \times \rho_0$ is $ab$-insensitive on $I \setminus J$; hence so too is $C \setminus (R \times \rho_0)$. We therefore complete the round by setting $I = I \setminus J$ and transferring $R \times \rho_0$ (a disjoint union of subspaces $\{y\} \times \rho_0$) from $C$ into $\calS$. This shrinks the number of coordinates in $I$ by $m$, as promised. And since we can crudely bound $\unif_k^{\otimes J}(\rho_0) = k^{d-m} \geq 2k^{-m}$, we conclude \[ | ||
\ | \unif_k^{\otimes n}(R \times \rho_0) \geq \frac{\alpha}{\bigl(k(k+d)\bigr)^m}, | ||
\] | \] | ||
as required to establish~\eqref{eqn: | as required to establish~\eqref{eqn:C-shrinks} inductively. | ||
\end{proof} | \end{proof} | ||
We conclude this section by simplifying parameters slightly, then deducing Theorem~\ref{thm:partition} for intersections of $ab$-insensitive sets. | |||
\begin{corollary} \label{cor:partition} Let $\ | \begin{corollary} \label{cor:partition} Let $d \geq k \geq 3$, $0 < \eta < 1/2$, and define $m$ as in Theorem~\ref{thm:partition}. If $C \subseteq [k]^n$ is $ab$-insensitive and $n \geq d^{3m}$, then the conclusion of Theorem~\ref{thm:partition} holds. | ||
\end{corollary} | \end{corollary} | ||
\begin{proof} | \begin{proof} | ||
\ | We only need check that $d^{3m} \geq m \bigl(k(k+d)\bigr)^m \ln(1/\eta)$. We use the bounds $k \leq d$ and $m \geq 4/\eta$ (which is certainly necessary), and hence must show $d^{3m} \geq m \ln(m/4) (2d^2)^m$. This holds for every $d \geq 3$ and $m > 4$.\noteryan{I checked} | ||
\end{proof} | \end{proof} | ||
\begin{corollary} \label{cor:multi-partition} Let $\ | \begin{corollary} \label{cor:multi-partition} Let $d, k, \eta, m$ be as in Corollary~\ref{cor:partition}, and write $f(d) = d^{3m(d)}$, treating $m$ as a function of $d$, with $k$ and $\eta$ fixed. Let $C \subseteq [k]^n$ be expressible as $C = C_1 \cap \cdots \cap C_\ell$, where each $C_s$ is $a_sb_s$-insensitive. If $n \geq f^{(\ell)}(d)$\noteryan{that's $f$ iterated $\ell$ times} then the conclusion of Theorem~\ref{thm:partition} holds with error bound $\ell \eta$. | ||
\end{corollary} | \end{corollary} | ||
\begin{proof} | \begin{proof} | ||
The proof is an induction on $\ell$, with Corollary~\ref{cor:partition} serving as the base case. In the general case, since $n \geq | The proof is an induction on $\ell$, with Corollary~\ref{cor:partition} serving as the base case. In the general case, since $n \geq f^{(\ell-1)}(f(d))$, by induction we can partition $C' = (C_1 \cap \cdots \cap C_{\ell-1})$ into a collection $\calS'$ of disjoint nondegenerate $f(d)$-dimensional subspaces, along with an error set $E'$ satisfying $\unif_k^{\otimes n}(E') \leq (\ell-1)\eta$. For each $\sigma \in \calS'$, define $D_\sigma = C_\ell \cap \sigma$. If we identify $\sigma$ with $[k]^{f(d)}$ then we may think of $D_\sigma$ as an $a_\ell b_\ell$-insensitive subset of $[k]^{f(d)}$\noteryan{justify?}. Thus we may apply Corollary~\ref{cor:partition} and partition $D_\sigma$ into a collection $\calS_\sigma$ of nondegenerate $d$-dimensional subspaces, along with an error set $E_\sigma$ satisfying ``$\unif_k^\sigma(E_\sigma)$'' $\leq \eta$.\noteryan{bad invented notation} Note that in the original space $[k]^n$ we have $\unif_k^{\otimes n}(E_\sigma) \leq \eta \cdot \unif_k^{\otimes n}(\sigma)$.\noteryan{$ = \eta \cdot k^{f(d)-n}$. There's a slight subtlety here.} Hence we may complete the induction by taking $\calS$ to be $\{D_\sigma : \sigma \in \calS'\}$\noteryan{Point out that a $d$-dim subspace of a subspace is a $d$-dim subspace?} and $E$ to be $E' \cup \bigcup \{E_\sigma : \sigma \in \calS'\}$, observing that $\unif_k^{\otimes n}(E) \leq (\ell-1)\eta + \eta (\sum_{\sigma \in \calS'} \unif_k^{\otimes n}(\sigma)) \leq \ell \eta$ as required. | ||
\end{proof} | \end{proof} |
Latest revision as of 12:26, 8 July 2009
\section{Partitioning \texorpdfstring{$ab$}{ab}-insensitive sets}
The last tool we need is the result described in Section~\ref{sec:outline-partition}; given the multidimensional DHJ($k-1$) theorem, we show that $ab$-insensitive subsets of $[k]^n$ can be almost completely partitioned into disjoint $d$-dimensional subspaces.
\begin{theorem} \label{thm:partition} Let $k \geq 3$, $d \geq 1$, $0 < \eta < 1/2$. Let $C \subseteq [k]^n$ be $ab$-insensitive on $I$, and assume \[ \abs{I} \geq m \bigl(k(k+d)\bigr)^m \ln(1/\eta), \] where \[ m = 2\mdhj{k-1}{\eta/4}{d}. \] Then $C$ can be partitioned into a collection $\calS$ of disjoint $d$-dimensional subspaces, along with an error set $E$ satisfying $\unif_k^{\ot n}(E) \leq \eta$. \end{theorem} \begin{proof} \noteryan{Maybe change all the $\unif_k^{\otimes n}$'s just to $\unif$'s, for typographical simplicity.} The proof proceeds in ``rounds, $t = 1, 2, 3, \dots$. In each round, we remove some disjoint subspaces from $C$ and put them into $\calS$; and, the set $I$ shrinks by $m$ coordinates. We will show that after the $t$th round, \begin{equation} \label{eqn:C-shrinks} \unif_k^{\otimes n}(C) \leq \left(1 - \bigl(k(k+d)\bigr)^{-m}\right)^t. \end{equation} We continue the process until $\unif_k^{\otimes n}(C) \leq \eta$, at which point we may stop and set $E = C$. Because of~\eqref{eqn:C-shrinks}, the process stops after at most $T = \bigl(k(k+d)\bigr)^m \ln(1/\eta)$ rounds. Since we insisted $\abs{I} \geq mT$ initially, the set $I$ never ``runs out of coordinates.
Suppose we are about to begin the $t$th round; hence, writing $\alpha = \unif_k^{\otimes n}(C)$ we have \[ \eta < \alpha \leq \left(1 - \bigl(k(k+d)\bigr)^{-m}\right)^{t-1}. \] The round begins by choosing an arbitrary $J \subseteq I$ with $\abs{J} = m$. We have \[ \alpha = \Pr_{x \sim \unif_k^{\otimes n}}[x \in C] = \Ex_{y \sim \unif_k^{\otimes \barJ}}[\unif_k^{\otimes J}(C_y)], \] where we have written $C_y = \{z \in [k]^J : (y,z) \in C\}$. Hence $\unif_k^{\otimes J}(C_y) \geq \alpha/2$ for at least a $\alpha/2$ probability mass of $y$'s (under $\unif_k^{\otimes \barJ}$); call these $y$'s ``good. Since $J \subseteq I$ and $C$ is $ab$-insensitive on $I$, it follows that each $C_y$ is $ab$-insensitive on $J$. Since $\abs{J} = m = 2\mdhj{k-1}{(\eta/2)/2}{d} \geq 2\mdhj{k-1}{(\alpha/2)/2}{d}$, it follows from Proposition~\ref{prop:mdhj-insens} that for each good $y$ there must exist a $d$-dimensional subspace $\rho \subseteq C_y$. Since the number of $d$-dimensional subspaces in $[k]^m$ is at most $(k+d)^m$, there must exist a \emph{fixed} $d$-dimensional subspace $\rho_0 \subseteq [k]^J$ such that \begin{equation} \label{eqn:C-mass-decr} \Pr_{y \sim \unif_k^{\otimes \barJ}}[\rho_0 \subseteq C_y] \geq \frac{\alpha}{2(k+d)^m}. \end{equation} Let $R \subseteq [k]^{\barJ}$ be the set of $y$'s with $\rho_0 \subseteq C_y$. Since $C$ is $ab$-insensitive on $I$, it is easy to see\noteryan{Honest.} that $R$ is $ab$-insensitive on $I \setminus J$. Thus $R \times \rho_0$ is $ab$-insensitive on $I \setminus J$; hence so too is $C \setminus (R \times \rho_0)$. We therefore complete the round by setting $I = I \setminus J$ and transferring $R \times \rho_0$ (a disjoint union of subspaces $\{y\} \times \rho_0$) from $C$ into $\calS$. This shrinks the number of coordinates in $I$ by $m$, as promised. And since we can crudely bound $\unif_k^{\otimes J}(\rho_0) = k^{d-m} \geq 2k^{-m}$, we conclude \[ \unif_k^{\otimes n}(R \times \rho_0) \geq \frac{\alpha}{\bigl(k(k+d)\bigr)^m}, \] as required to establish~\eqref{eqn:C-shrinks} inductively. \end{proof}
We conclude this section by simplifying parameters slightly, then deducing Theorem~\ref{thm:partition} for intersections of $ab$-insensitive sets.
\begin{corollary} \label{cor:partition} Let $d \geq k \geq 3$, $0 < \eta < 1/2$, and define $m$ as in Theorem~\ref{thm:partition}. If $C \subseteq [k]^n$ is $ab$-insensitive and $n \geq d^{3m}$, then the conclusion of Theorem~\ref{thm:partition} holds. \end{corollary} \begin{proof} We only need check that $d^{3m} \geq m \bigl(k(k+d)\bigr)^m \ln(1/\eta)$. We use the bounds $k \leq d$ and $m \geq 4/\eta$ (which is certainly necessary), and hence must show $d^{3m} \geq m \ln(m/4) (2d^2)^m$. This holds for every $d \geq 3$ and $m > 4$.\noteryan{I checked} \end{proof}
\begin{corollary} \label{cor:multi-partition} Let $d, k, \eta, m$ be as in Corollary~\ref{cor:partition}, and write $f(d) = d^{3m(d)}$, treating $m$ as a function of $d$, with $k$ and $\eta$ fixed. Let $C \subseteq [k]^n$ be expressible as $C = C_1 \cap \cdots \cap C_\ell$, where each $C_s$ is $a_sb_s$-insensitive. If $n \geq f^{(\ell)}(d)$\noteryan{that's $f$ iterated $\ell$ times} then the conclusion of Theorem~\ref{thm:partition} holds with error bound $\ell \eta$. \end{corollary} \begin{proof} The proof is an induction on $\ell$, with Corollary~\ref{cor:partition} serving as the base case. In the general case, since $n \geq f^{(\ell-1)}(f(d))$, by induction we can partition $C' = (C_1 \cap \cdots \cap C_{\ell-1})$ into a collection $\calS'$ of disjoint nondegenerate $f(d)$-dimensional subspaces, along with an error set $E'$ satisfying $\unif_k^{\otimes n}(E') \leq (\ell-1)\eta$. For each $\sigma \in \calS'$, define $D_\sigma = C_\ell \cap \sigma$. If we identify $\sigma$ with $[k]^{f(d)}$ then we may think of $D_\sigma$ as an $a_\ell b_\ell$-insensitive subset of $[k]^{f(d)}$\noteryan{justify?}. Thus we may apply Corollary~\ref{cor:partition} and partition $D_\sigma$ into a collection $\calS_\sigma$ of nondegenerate $d$-dimensional subspaces, along with an error set $E_\sigma$ satisfying ``$\unif_k^\sigma(E_\sigma)$ $\leq \eta$.\noteryan{bad invented notation} Note that in the original space $[k]^n$ we have $\unif_k^{\otimes n}(E_\sigma) \leq \eta \cdot \unif_k^{\otimes n}(\sigma)$.\noteryan{$ = \eta \cdot k^{f(d)-n}$. There's a slight subtlety here.} Hence we may complete the induction by taking $\calS$ to be $\{D_\sigma : \sigma \in \calS'\}$\noteryan{Point out that a $d$-dim subspace of a subspace is a $d$-dim subspace?} and $E$ to be $E' \cup \bigcup \{E_\sigma : \sigma \in \calS'\}$, observing that $\unif_k^{\otimes n}(E) \leq (\ell-1)\eta + \eta (\sum_{\sigma \in \calS'} \unif_k^{\otimes n}(\sigma)) \leq \ell \eta$ as required. \end{proof}