Measures.tex: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
(No difference)

Latest revision as of 12:25, 8 July 2009

\section{Passing between probability measures} \label{sec:measures}

The goal of this section is to work out bounds for the error arising when passing back and forth between $\unif_k$ and $\ens{k}$, as described in Section~\ref{sec:outline-dist}. Lemma~\ref{lem:distributions} below gives the bounds we need. The reader will not lose much by just reading its statement; the proof is just technical calculations.

Before stating Lemma~\ref{lem:distributions} we need some definitions.

\ignore{ \begin{definition} Given a set $A \subseteq [k]^n$ and a restriction $(J,x_\barJ)$, we write $A_{x_\barJ}$ for the subset of $[k]^{J}$ defined by $A_{x_\barJ} = \{y \in [k]^J : (x_{\barJ}, y_J) \in A\}$. \end{definition}}

\begin{definition} \label{def:r4r} For $0 \leq \ppn \leq 1$, we say that $J$ is a \emph{$\ppn$-random subset} of $[n]$ if $J$ is formed by including each coordinate $i \in [n]$ independently with probability $\ppn$. Assuming $r \leq n/2$, we say that $J$ is an \emph{$[r,4r]$-random subset} of $[n]$ if $J$ is a $\ppn$-random subset of $[n]$ conditioned on $r \leq \abs{J} \leq 4r$, with $\ppn = 2r/n$. \end{definition} \begin{definition} A \emph{distribution family} $(\distra^m)_{m \in \N}$ (over $[k]$) is a sequence of probability distributions, where $\distra^m$ is a distribution on $[k]^m$. In this paper the families we consider will either be the equal-(nondegenerate-)slices family $\distra^m = \ens{k}^m$ or $\distra^m = \eqs{k}^m$, or will be the product distributions based on a single distribution $\prd$ on $[k]$, $\distra^m = \prd^{\otimes m}$. \end{definition}


\begin{lemma} \label{lem:distributions} Let $(\distra^m)$ and $(\distrb^m)$ be distribution families. Assume $2 \ln n \leq r \leq n/2$. Let $J$ be an $[r,4r]$-random subset of $[n]$, let $x$ be drawn from $[k]^{\barJ}$ according to $\distra^{\abs{\barJ}}$, and let $y$ be drawn from $[k]^J$ according to $\distrb^{\abs{J}}$. The resulting distribution on the composite string $(x,y) \in [k]^n$ has total variation distance from $\distra^n$ which can be bounded as follows: \begin{enumerate} \item (Product to equal-slices.) \label{eqn:distrs-prd-eqs} If $\distra^m = \prd^{\otimes m}$ and $\distrb^m = \eqs{\ell}^m$ for $\ell \leq k$, the bound is \noteryan{You know, we only need this result for the uniform distribution, in which case we can bound the below by the simpler $2k \cdot r/\sqrt{n}$.} \[ (2{\textstyle \sqrt{\frac{1}{\min(\prd)}-1}})+2) \cdot r / \sqrt{n}. \] \item (Equal-slices to product.) \label{eqn:distrs-eqs-prd} If $\distra^m = \eqs{k}^m$ and $\distrb^m = \prd^{\otimes m}$, the bound is $4k \cdot r/\sqrt{n}$, independent of $\prd$. \item (Equal-slices to equal-slices.) \label{eqn:distrs-eqs-eqs} If $\distra^m = \eqs{k}^m$ and $\distrb^m = \eqs{\ell}^m$ for $\ell \leq k$, the bound is $4k \cdot r/\sqrt{n}$. \end{enumerate} \end{lemma}

Although Lemma~\ref{lem:distributions} involves the equal-slices distribution, one can convert to equal-nondegenerate-slices if desired using Proposition~\ref{prop:degen}.


Since $\eqs{k}^n$ is a mixture of product distributions (Proposition~\ref{prop:eqs-mix}), the main work in proving Lemma~\ref{lem:distributions} involves comparing product distributions.


\subsection{Comparing product distributions} \begin{definition} For $\distra$ and $\distrb$ probability distributions on $\Omega^n$, the \emph{$\chi^2$ distance} $\dchi{\pi}{\nu}$ is defined by \[ \dchi{\distra}{\distrb} = \sqrt{\Varx_{x \sim \distra}\left[\frac{\distrb[x]}{\distra[x]}\right]}. \] Note that $\dchi{\distra}{\distrb}$ is \emph{not} symmetric in $\distra$ and $\distrb$. \end{definition}

The $\chi^2$ distance is introduced to help us prove the following fact: \begin{proposition} \label{prop:mix-distance} Let $\prd$ be a distribution on $\Omega$ with full support; i.e., $\min(\pi) \neq 0$. Suppose $\prd$ is slightly mixed with $\distrb$, forming $\wh{\prd}$; specifically, $\wh{\prd} = (1-\ppn) \prd + \ppn \distrb$. Then the associated product distributions $\prd^{\otimes n}$, $\wh{\prd}^{\otimes n}$ on $\Omega^{n}$ satisfy \[ \dtv{\prd^{\otimes n}}{\wh{\prd}^{\otimes n}} \leq \dchi{\prd}{\distrb} \cdot \ppn \sqrt{n}. \] \end{proposition} \begin{proof} It is a straightforward consequence of Cauchy-Schwarz (see, e.g.~\cite[p.\ 101]{Rei89})\noteryan{This is the part using $\min(\prd) \neq 0$, by the way.} that \[ \dtv{\prd^{\otimes n}}{\wh{\prd}^{\otimes n}} \leq \dchi{\prd}{\wh{\prd}} \cdot \sqrt{n}, \] and the identity $\dchi{\prd}{\wh{\prd}} = \ppn \cdot \dchi{\prd}{\distrb}$ follows easily from the definitions. \end{proof} This can be bounded independently of $\distrb$, as follows: \begin{corollary} \label{cor:mix-distance} In the setting of Proposition~\ref{prop:mix-distance}, \[ \dtv{\prd^{\otimes n}}{\wh{\prd}^{\otimes n}} \leq \sqrt{{\textstyle \frac{1}{\min(\prd)}} - 1} \cdot \ppn \sqrt{n}, \] \end{corollary} \begin{proof} It is easy to check that the distribution $\distrb$ maximizing $\dchi{\prd}{\distrb}$ is the one putting all its mass on the $x$ minimizing $\prd[x]$. In this case one calculates $\dchi{\prd}{\distrb} = \sqrt{\frac{1}{\min(\pi)} - 1}$. \end{proof}



\subsection{Proof of Lemma~\ref{lem:distributions}}


\begin{definition} \label{def:compos-distr} Let $0 \leq \ppn \leq 1$ and let $(\distra^m)$, $(\distrb^m)$ be distribution families. Drawing from the \emph{$(\ppn, \distra, \distrb)$-composite distribution} on $[k]^n$ entails the following: $J$ is taken to be a $\ppn$-random subset of~$[n]$; $x$ is drawn from $[k]^{\barJ}$ according to $\distra^{\abs{\barJ}}$; and, $y$ is drawn from $[k]^J$ according to $\distrb^{\abs{J}}$. We sometimes think of this distribution as just being a distribution on composite strings $z = (x, y) \in [k]^n$. \end{definition}

Note that the distribution described in Lemma~\ref{lem:distributions} is very similar to the $(\ppn, \distra, \distrb)$-composite distribution, except that it uses an $[r, 4r]$-random subset rather than a $\ppn$-random subset. We can account for this difference with a standard Chernoff (large-deviation) bound:\noteryan{Citation needed?} \begin{fact} \label{fact:dev} If $J$ is a $\ppn$-random subset of $[n]$ with $\ppn = 2r/n$ as in Definition~\ref{def:r4r}, then $r \leq \abs{J} \leq 4r$ holds except with probability at most $2\exp(-r/4)$. \end{fact}

The utility of using $\ppn$-random subsets in Definition~\ref{def:compos-distr} is the following observation: \begin{fact} If $\prd$ and $\distrb$ are distributions on $[k]$, thought of also as product distribution families, then the $(\ppn, \prd, \distrb)$-composite distribution on $[k]^n$ is precisely the product distribution $\wh{\prd}^{\otimes n}$, where $\wh{\prd}$ is the mixture distribution $(1-\ppn)\prd + \ppn \distrb$ on $[k]$. \end{fact}

Because of this, we can use Corollary~\ref{cor:mix-distance} to bound the total variation distance between $\prd^{\otimes n}$ and a composite distribution. We conclude: \begin{proposition} \label{prop:prod-composite} Let $\prd$ and $\distrb$ be any distributions on $[k]$, thought of also as product distribution families. Writing $\wt{\prd}$ for the $(\ppn,\prd,\distrb)$-composite distribution on strings in $[k]^n$, we have \[ \dtv{\prd^{\otimes n}}{\wt{\prd}} \leq {\textstyle \sqrt{\frac{1}{\min(\prd)}-1}} \cdot \ppn \sqrt{n}. \] \end{proposition}

Recall that for any $\ell \leq k$, the equal-slices distribution $\eqs{\ell}^{m}$ on $m$ coordinates is a mixture of product distributions $\spac^{\otimes m}$ on $[k]^m$. We can therefore average Proposition~\ref{prop:prod-composite} over $\distrb$ to obtain: \begin{proposition} \label{prop:prod-eqs} If $\wt{\pi}$ denotes the $(\ppn,\pi,\eqs{\ell})$-composite distribution on strings in $[k]^n$, where $\ell \leq k$, then we have \[ \dtv{\pi^{\otimes n}}{\wt{\pi}} \leq {\textstyle \sqrt{\frac{1}{\min(\pi)}-1}} \cdot \ppn \sqrt{n}. \] \end{proposition} Here we have used the following basic bound, based on the triangle inequality: \begin{fact} \label{fact:tv-mix} Let $(\distrb_\kappa)_{\kappa \in K}$ be a family of distributions on $\Omega^n$, let $\varsigma$ be a distribution on $K$, and let $\overline{\distrb}$ denote the associated mixture distribution, given by drawing $\kappa \sim \varsigma$ and then drawing from $\distrb_\kappa$. Then \[ \dtv{\distra}{\overline{\distrb}} \leq \Ex_{\kappa \sim \varsigma}[\dtv{\distra}{\distrb_\kappa}]. \] \end{fact}

If we instead use this fact to average Proposition~\ref{prop:prod-composite} over $\prd$, we can obtain: \begin{proposition} \label{prop:eqs-prod} Let $\distrb$ be any distribution on $[k]$. Writing $\distra$ for the $(\ppn, \eqs{k}, \distrb)$-composite distribution on strings in $[k]^n$, we have \[ \dtv{\eqs{k}^n}{\distra} \leq (2k-1)\ppn \sqrt{n}. \] \end{proposition} \begin{proof} Thinking of $\eqs{k}^m$ as the mixture of product distributions $\spac^{\otimes m}$, where $\spac$ is a random spacing on $[k]$, Fact~\ref{fact:tv-mix} and Proposition~\ref{prop:prod-composite} imply \[ \dtv{\eqs{k}^n}{\distra} \leq \Ex_{\spac}\left[{\textstyle \sqrt{\frac{1}{\min(\spac)}-1}}\right] \cdot \ppn \sqrt{n}. \] We can upper-bound the expectation\noteryan{Undoubtedly someone has worked hard on this $-1/2$th moment of the least spacing before (Devroye '81 or '86 perhaps), but I think it's probably okay to do the following simple thing here} by \begin{multline*} \Ex_{\spac}\left[{\textstyle \sqrt{\frac{1}{\min(\spac)}}}\right] \quad=\quad \int_{0}^\infty \Pr_{\spac}\left[{\textstyle \sqrt{\frac{1}{\min(\spac)}}} \geq t\right]\,dt \quad=\quad \int_{0}^\infty \Pr_{\spac}[\min(\spac) \leq 1/t^2]\,dt \\ \leq\quad k + \int_{k}^\infty \Pr_{\spac}[\min(\spac) \leq 1/t^2]\,dt \quad\leq\quad k + \int_{k}^\infty (k(k-1)/t^2) \,dt \quad=\quad 2k-1, \end{multline*} where in the second-to-last step we used Proposition~\ref{prop:rand-min}. \end{proof} Averaging now once more in the second component, we obtain the following: \begin{proposition} \label{prop:eqs-eqs} Let $2 \leq \ell \leq k$ and let $\distra'$ denote the $(\ppn, \eqs{k}, \eqs{\ell})$-composite distribution on strings in $[k]^n$. Then \[ \dtv{\eqs{k}^n}{\distra'} \leq (2k-1) \ppn \sqrt{n}. \] \end{proposition}



We can now obtain the proof of Lemma~\ref{lem:distributions}:

\begin{proof} The three statements in Lemma~\ref{lem:distributions} essentially follow from Propositions~\ref{prop:prod-eqs}, \ref{prop:eqs-prod}, and \ref{prop:eqs-eqs}, taking $\ppn = 2r/n$. This would give bounds of $2{\textstyle \sqrt{\frac{1}{\min(\pi)}-1}} \cdot r / \sqrt{n}$, $(4k-2) \cdot r/\sqrt{n}$, and $(4k-2) \cdot r/\sqrt{n}$, respectively. However we need to account for conditioning on $r \leq \abs{J} \leq 4r$. By Fact~\ref{fact:dev}, this conditioning increases the total variation distance by at most $2\exp(-r/4)$. Using the lower bound $r \geq 2 \ln n$ from the lemma's hypothesis, this quantity is at most $2r/\sqrt{n}$, completing the proof. \end{proof}