Correlation.tex: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
(No difference)

Latest revision as of 12:26, 8 July 2009

\section{Line-free sets correlate with insensitive set intersections} In this section we make rigorous the argument described in Section~\ref{sec:outline-corr}; we show that a dense subset $A$ either contains a combinatorial line, or it has slight correlation with a union of $ab$-insensitive sets.

\noteryan{I think it would be good to go through the paper and soften explicit constants to $O(\cdot)$'s, for readability. }

First we reduce to the case where the set is dense under both $\eqs{k}$ and $\eqs{k-1}$.

\begin{lemma} \label{lem:32} Let $k \geq 3$, suppose $A \subseteq [k]^n$ satisfies $\eqs{k}(A) \geq \delta$, and let $\theta$ satisfy \[ 10 k \frac{\ln n}{\sqrt{n}} \leq \theta \leq \delta. \] Then there exists a restriction $(J, x_\barJ)$ with $\abs{J} \geq (\theta/5k) \sqrt{n}$ such that one of the following two conditions holds: \begin{enumerate} \item \label{eqn:lem32_1} $\eqs{k}^J(A_{x_\barJ}) \geq \delta + \theta$; or, \item \label{eqn:lem32_2} both $\eqs{k}^J(A_{x_\barJ}) \geq \delta - 3\theta^{1/4}\delta^{1/2}$ and $\eqs{k-1}^J(A_{x_\barJ}) \geq \delta - 3\theta^{1/2}$. \end{enumerate} \end{lemma} \begin{proof} Let $r = \lceil (\theta/5k) \sqrt{n} \rceil$. As in Lemma~\ref{lem:distributions}, let $J$ be an $[r,4r]$-random subset of $[n]$ and let $x$ be drawn from $\eqs{k}^{\barJ}$. If $\Ex_{J, x}[\eqs{k}(A_{x})^2] \geq (\delta + \theta)^2$, then there must exist some restriction $(J,x)$ with $\abs{J} \geq r$ and $\eqs{k}^J(A_{x}) \geq \delta + \theta$. In this case, conclusion~\ref{eqn:lem32_1} above holds. We henceforth assume \begin{equation} \label{eqn:moment} \Ex_{J, x}[\eqs{k}(A_{x})^2] < (\delta + \theta)^2 \end{equation} and show that conclusion~\ref{eqn:lem32_2} holds.

\ignore{Let $y$ be drawn from $\eqs{k}^{J}$, and let $z$ be drawn from $\eqs{k-1}^{J}$.} Since $\eqs{k}(A) \geq \delta$, two applications of Lemma~\ref{lem:distributions}.\ref{eqn:distrs-eqs-eqs} yield \begin{align} \Ex_{J, x}[\eqs{k}(A_{x})] & \geq \delta - 4kr/\sqrt{n} \geq \delta - \theta \label{eqn:mean3} \\ \Ex_{J, x}[\eqs{k-1}(A_{x})] & \geq \delta - 4kr/\sqrt{n} \geq \delta - \theta, \label{eqn:mean2} \end{align} where we've used our definition of $r$ (and the hypothesis $\theta \geq (10 k \ln n)/\sqrt{n}$ ensures that $r \geq 2 \ln n$ as required for the lemma.) Combining~\eqref{eqn:moment}, \eqref{eqn:mean3} gives \[ \Varx_{J,x}[\eqs{k}(A_{x})] < (\delta + \theta)^2 - (\delta - \theta)^2 = 4 \theta \delta. \] Thus Chebyshev's inequality implies that except with probability at most $\theta^{1/2}$ over the choice of $(J,x)$, we have that $\eqs{k}(A_x)$ is within $\theta^{-1/4} \cdot (4 \theta \delta)^{1/2} = 2 \theta^{1/4} \delta^{1/2}$ of its expectation. When this happens, \begin{equation} \label{eqn:conc2a} \eqs{k}(A_x) \geq \delta - \theta - 2 \theta^{1/4} \delta^{1/2} \geq \delta - 3 \theta^{1/4} \delta^{1/2} \end{equation} (using $\theta \leq \delta$). On the other hand, from~\eqref{eqn:mean2} we immediately deduce that with probability at least $2\theta^{1/2}$ over the choice of $(J,x)$ we have \begin{equation} \label{eqn:conc2b} \eqs{k-1}(A_{x}) \geq \delta - \theta - 2 \theta^{1/2} \geq \delta - 3\theta^{1/2}. \end{equation} Thus with probability at least $2\theta^{1/2} - \theta^{1/2} > 0$ over the choice of $(J,x)$, we have both~\eqref{eqn:conc2a}, \eqref{eqn:conc2b}, establishing conclusion~\ref{eqn:lem32_2} of the lemma. \end{proof}

We now come to the main theorem in this section, deducing a key step in the proof of DHJ($k$) from the probabilistic DHJ($k-1$) theorem. \begin{theorem} \label{thm:correlate} Let $k \geq 3$ and suppose we have established the probabilistic DHJ($k-1$) theorem. Further suppose $A \subseteq [k]^n$ has $\ens{k}(A) \geq \delta_k$ and $\ens{k-1}(A) \geq \delta_{k-1}$. Finally, assume $n \geq \Pdhj{k-1}{\delta_{k-1}}$. Then either $A$ contains a combinatorial line (of length $k$), or there exists $B \subseteq [k]^n$ with $\ens{k}(B) \geq \delta_k$ and \[ \frac{\ens{k}(A \cap B)}{\ens{k}(B)} \geq \delta_k + \delta_k \cdot \pdhj{k-1}{\delta_{k-1}} \] such that \[ B = B_{1} \cup B_2 \cup \cdots \cup B_{k-1}, \] where for each $a \in [k-1]$, $B_a$ is $ak$-insensitive. \end{theorem} \begin{proof} For $a \in [k-1]$, let $L_a = \{x \in [k]^n : \chg{x}{k}{a} \in A\}$, an $ak$-insensitive set. Let $L = L_1 \cap L_2 \cap \cdots \cap L_{k-1}$. In other words, $L$ is the set line templates over $[k-1]^n$ (possibly degenerate) whose corresponding lines are entirely in $A$. Let $L' \subseteq L$ be the nondegenerate such line templates; i.e., $L' = \{x \in L : \exists j \in [n] \text{ s.t.\ } x_j = k\}$. Note that $\ens{k}(L \setminus L') = 0$.

The key observation is that if $A \cap L' \neq \emptyset$, we have a (nondegenerate) combinatorial line of length~$k$ entirely in $A$. So assume otherwise; hence $A \subseteq \overline{L'} = [k]^n \setminus L'$. Since $\ens{k-1}(A) \geq \delta_{k-1}$ and $n \geq \Pdhj{k-1}{\delta_{k-1}}$, the probabilistic DHJ($k-1$) theorem implies that $\ens{k}(L') = \ens{k}(L) \geq \pdhj{k-1}{\delta_{k-1}}$. It follows that \[ \frac{\ens{k}(A \cap \overline{L})}{\ens{k}(\overline{L})} = \frac{\ens{k}(A \cap \overline{L'})}{\ens{k}(\overline{L'})} = \frac{\eqs{k}(A)}{\eqs{k}(\overline{L'})} \geq \frac{\delta_k}{1 - \pdhj{k-1}{\delta_{k-1}}} \geq \delta_k + \delta_k \cdot \pdhj{k-1}{\delta_{k-1}}. \] The proof is completed by taking $B = \overline{L}$; this has $\ens{k}(B) = \ens{k}(\overline{L'}) \geq \delta_k$ because $\overline{L'} \supseteq A$. \end{proof}

We will prefer to obtain this relative density increment under the uniform distribution, rather than under equal-nondegenerate-slices: \begin{lemma} \label{lem:back-to-uniform} Suppose $A \subseteq B \subseteq [k]^n$ satisfy $\ens{k}(B) = \beta$ and $\ens{k}(A) \geq \delta \cdot \ens{k}(B)$. Let $0 < \eta < 3\delta$ be a parameter, define $r = (\beta \eta /15k) \sqrt{n}$, and assume $2\ln n \leq r \leq n/2$. Then there exists a restriction $(J,x_{\barJ})$ with $\abs{J} \geq r$ under which $\unif_k(B_{x_\barJ}) \geq (\eta/3) \beta$ and $\unif_k(A_{x_\barJ}) \geq (\delta - \eta) \unif_k(B_{x_\barJ})$.\noteryan{And if $B$ was a union of $ij$-insensitive sets before\dots} \end{lemma} \begin{proof} Let $J$ be an $[r,4r]$-random subset of $[n]$, let $x \sim \eqs{k}^{\barJ}$, and let $y \sim \unif_k^J$. From Lemma~\ref{lem:distributions}, the distribution on $(x,y)$ is $(4kr/\sqrt{n})$-close to $\eqs{k}^n$. Further, from~\eqref{prop:degen} the total variation distance between $\eqs{k}^n$ and $\ens{k}^n$ is at most $k(k-1)/n \leq kr/\sqrt{n}$\noteryan{uses $k \leq \sqrt{n}$ or so}. By choice of $r$, the combined distance bound $5kr/\sqrt{n}$ is at most $(\eta/3)\beta$. We therefore have \begin{equation} \label{eqn:AxBx} \Ex_{J,x}[\unif_k(A_x)] \geq \delta \beta - (\eta/3)\beta, \qquad \Ex_{J,x}[\unif_k(B_x)] \leq \beta + (\eta/3)\beta. \end{equation}

Let $H$ be the event that $\unif_k(B_x) \geq (\eta/3)\beta$. On one hand, since $A_x \subseteq B_x$ always we have \[ \Ex_{J,x}[\unif_k(A_x)] \leq \Ex_{J,x}[\unif_k(A_x) \mid H] \Pr[H] + (\eta/3)\beta. \] On the other hand, we have \[ \Ex_{J,x}[\unif_k(B_x)] \geq \Ex_{J,x}[\unif_k(B_x) \mid H] \Pr[H]. \] Combining these two deductions with~\eqref{eqn:AxBx} yields \[ \Ex_{J,x}[\unif_k(B_x) \mid H] \Pr[H] \leq \beta(1+\eta/3), \qquad (\delta - 2\eta/3)\beta \leq \Ex_{J,x}[\unif_k(A_x) \mid H] \Pr[H]. \] Thus \[ \frac{\delta - 2\eta/3}{1+\eta/3} \cdot \Ex_{J,x}[\unif_k(B_x) \mid H] \Pr[H] \leq \Ex_{J,x}[\unif_k(A_x) \mid H] \Pr[H], \] whence \[ 0 \leq \Ex_{J,x}[\unif_k(A_x) - (\delta - \eta)\unif_k(B_x) \mid H], \] where we used $(\delta - 2\eta/3)/(1+\eta/3) \geq \delta - \eta$. Thus there exist some $(J,x)$ where $H$ occurs and also $\unif_k(A_x) \geq (\delta - \eta) \unif_k(B_x)$, completing the proof. \end{proof}

Finally, the set $B$ we get from Theorem~\ref{thm:correlate} is a union of insensitive sets; we would prefer an intersection: \begin{lemma} \label{lem:switch} Suppose $B = B_1 \cup B_2 \cup \cdots B_{k-1} \subseteq [k]^n$, where $B_a$ is $ak$-insensitive. Then $B$ is a disjoint union of $k-1$ sets $C_1, \dots, C_{k-1}$, where $C_b$ is an intersection of $ak$-insensitive sets, $a = 1 \dots b$. \end{lemma} \begin{proof} Take $C_b = B_b \setminus (B_1 \cup \cdots \cup B_{b-1})$. \end{proof}