Longest constrained sequences: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
Alec (talk | contribs)
mNo edit summary
Alec (talk | contribs)
mNo edit summary
 
(19 intermediate revisions by the same user not shown)
Line 10: Line 10:
  1 = -2,  1 = -5,  1 =  -7 : [284]
  1 = -2,  1 = -5,  1 =  -7 : [284]
  1 = -2,  1 = -5, 11 = -13 : [>=974]
  1 = -2,  1 = -5, 11 = -13 : [>=974]
  2 = +3 : [>=514]
  1 = -2,  1 = -5, 11 = -13, 17 = -19 : [974]
  2 = -3 : [>=587]
1 = -2,  1 = -5, 11 = -13, 17 = -19, 23 = +29 : [974]
1 = -2,  1 = -5, 11 = -13, 17 = -19, 23 = +29, 23 = -31 : [854]
1 = +3 : [188]
1 = -3 : [>=575]
1 = -3,  1 = -5 : [>=476]
1 = -3,  1 = +5 : [>=376]
1 = -3,  2 = +5 : [>=506]
1 = -3,  2 = +5,  1 = -11 : [506]
1 = +32 : [>=417]
2 = +3 : [>=549*]
  2 = -3 : [>=641]
 
* Asterisk means that a depth-first search with a little look-ahead showed that the maximum is finite, but the actual maximum may be slightly above that shown.

Latest revision as of 10:21, 8 October 2010

The numbers in square brackets show (what we know of) the length of the longest sequence of discrepancy 2 satisfying the given constraints exactly. The notation [math]\displaystyle{ a=b }[/math] is shorthand for [math]\displaystyle{ T_a(x) = T_b(x) }[/math], and [math]\displaystyle{ a=-b }[/math] for [math]\displaystyle{ T_a(x) = -T_b(x) }[/math].

1 = +2 : [170]
1 = -2 : [>=974]
1 = -2,  1 = +3 : [188]
1 = -2,  1 = -3 : [470]
1 = -2,  1 = +5 : [356]
1 = -2,  1 = -5 : [>=974]
1 = -2,  1 = -5,  1 =  +7 : [>=566]
1 = -2,  1 = -5,  1 =  -7 : [284]
1 = -2,  1 = -5, 11 = -13 : [>=974]
1 = -2,  1 = -5, 11 = -13, 17 = -19 : [974]
1 = -2,  1 = -5, 11 = -13, 17 = -19, 23 = +29 : [974]
1 = -2,  1 = -5, 11 = -13, 17 = -19, 23 = +29, 23 = -31 : [854]
1 = +3 : [188]
1 = -3 : [>=575]
1 = -3,  1 = -5 : [>=476]
1 = -3,  1 = +5 : [>=376]
1 = -3,  2 = +5 : [>=506]
1 = -3,  2 = +5,  1 = -11 : [506]
1 = +32 : [>=417]
2 = +3 : [>=549*]
2 = -3 : [>=641]
  • Asterisk means that a depth-first search with a little look-ahead showed that the maximum is finite, but the actual maximum may be slightly above that shown.