Combinatorial subspace: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
mNo edit summary
mNo edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
An m-dimensional combinatorial subspace is obtained by taking m disjoint subsets <math>W_1,\dots,W_m</math> of <math>[n],</math> fixing the values of all coordinates outside these subsets, and taking all points that equal the fixed values outside the <math>W_i</math> and are constant on each <math>W_i.</math> Sometimes one adds the restriction that the maximum of each <math>W_i</math> is less than the minimum of <math>W_{i+1}</math>. (In particular, the Hales-Jewett theorem can be straightforwardly generalized to yield a monochromatic subspace of this more stronger kind.) In other words, where a [[combinatorial line]] has one set of wildcards, an m-dimensional combinatorial subspace has m sets of wildcards
An m-dimensional combinatorial subspace is obtained by taking m disjoint subsets <math>W_1,\dots,W_m</math> of <math>[n],</math> fixing the values of all coordinates outside these subsets, and taking all points that equal the fixed values outside the <math>W_i</math> and are constant on each <math>W_i.</math> Sometimes one adds the restriction that the maximum of each <math>W_i</math> is less than the minimum of <math>W_{i+1}</math>. (In particular, the Hales-Jewett theorem can be straightforwardly generalized to yield a monochromatic subspace of this more stronger kind.) In other words, where a [[combinatorial line]] has one set of wildcards, an m-dimensional combinatorial subspace has m sets of wildcards


For example, the following strings form a 2-dimensional combinatorial subspace of the strong kind (the wildcard sets are indicated above by a and b)
For example, the following strings form a 2-dimensional combinatorial subspace of the strong kind  
      
      
      a a    a    b  b        a  a    a    b  b        a  a    a    b  b
   
  3312131122121  3312131122222  3312131122323   
  3312131122121  3312131122222  3312131122323   
  3322231222121  3322231222222  3322231222323
  3322231222121  3322231222222  3322231222323
Line 10: Line 10:
and the following strings form a 2-dimensional combinatorial subspace of the weaker kind
and the following strings form a 2-dimensional combinatorial subspace of the weaker kind


        a    b  a    b                  a    b  a    b                  a    b  a    b
  113113121311321  113213122311321  113313123311321
  113113121311321  113213122311321  113313123311321
  113113221312321  113213222312321  113313223312321
  113113221312321  113213222312321  113313223312321
  113113221313321   113213322313321  113313323313321
  113113321313321   113213322313321  113313323313321


There is also a natural notion of a ''combinatorial embedding'' of <math>[3]^m</math> into <math>[3]^n.</math> Given a string <math>x\in[3]^n</math> and m disjoint subsets <math>W_1,\dots,W_m</math> of <math>[n],</math> send <math>y\in[3]^m</math> to <math>x+\sum_iy_iW_i,</math> where this denotes the sequence that takes the value <math>y_i</math> everywhere in the set <math>W_i</math> and is equal to x everywhere that does not belong to any <math>W_i</math>. An m-dimensional combinatorial subspace is the image of a combinatorial embedding.
There is also a natural notion of a ''combinatorial embedding'' of <math>[3]^m</math> into <math>[3]^n.</math> Given a string <math>x\in[3]^n</math> and m disjoint subsets <math>W_1,\dots,W_m</math> of <math>[n],</math> send <math>y\in[3]^m</math> to <math>x+y_1W_1+\dots+y_mW_m,</math> where this denotes the sequence that takes the value <math>y_i</math> everywhere in the set <math>W_i</math> and is equal to x everywhere that does not belong to any <math>W_i</math>. An m-dimensional combinatorial subspace is the image of a combinatorial embedding.

Latest revision as of 15:16, 16 February 2009

An m-dimensional combinatorial subspace is obtained by taking m disjoint subsets [math]\displaystyle{ W_1,\dots,W_m }[/math] of [math]\displaystyle{ [n], }[/math] fixing the values of all coordinates outside these subsets, and taking all points that equal the fixed values outside the [math]\displaystyle{ W_i }[/math] and are constant on each [math]\displaystyle{ W_i. }[/math] Sometimes one adds the restriction that the maximum of each [math]\displaystyle{ W_i }[/math] is less than the minimum of [math]\displaystyle{ W_{i+1} }[/math]. (In particular, the Hales-Jewett theorem can be straightforwardly generalized to yield a monochromatic subspace of this more stronger kind.) In other words, where a combinatorial line has one set of wildcards, an m-dimensional combinatorial subspace has m sets of wildcards

For example, the following strings form a 2-dimensional combinatorial subspace of the strong kind


3312131122121   3312131122222   3312131122323  
3322231222121   3322231222222   3322231222323
3332331322121   3332331322222   3332331322323

and the following strings form a 2-dimensional combinatorial subspace of the weaker kind

113113121311321   113213122311321   113313123311321
113113221312321   113213222312321   113313223312321
113113321313321   113213322313321   113313323313321

There is also a natural notion of a combinatorial embedding of [math]\displaystyle{ [3]^m }[/math] into [math]\displaystyle{ [3]^n. }[/math] Given a string [math]\displaystyle{ x\in[3]^n }[/math] and m disjoint subsets [math]\displaystyle{ W_1,\dots,W_m }[/math] of [math]\displaystyle{ [n], }[/math] send [math]\displaystyle{ y\in[3]^m }[/math] to [math]\displaystyle{ x+y_1W_1+\dots+y_mW_m, }[/math] where this denotes the sequence that takes the value [math]\displaystyle{ y_i }[/math] everywhere in the set [math]\displaystyle{ W_i }[/math] and is equal to x everywhere that does not belong to any [math]\displaystyle{ W_i }[/math]. An m-dimensional combinatorial subspace is the image of a combinatorial embedding.