Kakeya problem: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
No edit summary
No edit summary
 
(18 intermediate revisions by 4 users not shown)
Line 1: Line 1:
Define a '''Kakeya set''' to be a subset <math>A</math> of <math>[3]^n\equiv{\mathbb F}_3^n</math> that contains an [[algebraic line]] in every direction; that is, for every <math>d\in{\mathbb F}_3^n</math>, there exists <math>a\in{\mathbb F}_3^n</math> such that <math>a,a+d,a+2d</math> all lie in <math>A</math>.  Let <math>k_n</math> be the smallest size of a Kakeya set in <math>{\mathbb F}_3^n</math>.
A '''Kakeya set''' in <math>{\mathbb F}_3^n</math> is a subset <math>E\subset{\mathbb F}_3^n</math> that contains an [[algebraic line]] in every direction; that is, for every <math>d\in{\mathbb F}_3^n</math>, there exists <math>e\in{\mathbb F}_3^n</math> such that <math>e,e+d,e+2d</math> all lie in <math>E</math>.  Let <math>k_n</math> be the smallest size of a Kakeya set in <math>{\mathbb F}_3^n</math>.


Clearly, we have <math>k_1=3</math>, and it is easy to see that <math>k_2=7</math>. Using a computer, it is not difficult to find that <math>k_3=13</math> and <math>k_4\le 27</math>. Indeed, it seems likely that <math>k_4=27</math> holds, meaning that in <math>{\mathbb F}_3^4</math> one cannot get away with just <math>26</math> elements.
Clearly, we have <math>k_1=3</math>, and it is easy to see that <math>k_2=7</math>. Using a computer, it is not difficult to find that <math>k_3=13</math> and <math>k_4\le 27</math>. Indeed, it seems likely that <math>k_4=27</math> holds, meaning that in <math>{\mathbb F}_3^4</math> one cannot get away with just <math>26</math> elements.


== General lower bounds ==
== Basic Estimates ==


Trivially,  
Trivially, we have


:<math>k_n\le k_{n+1}\le 3k_n</math>.
:<math>k_n\le k_{n+1}\le 3k_n</math>.


Since the Cartesian product of two Kakeya sets is another Kakeya set, we have
Since the Cartesian product of two Kakeya sets is another Kakeya set, the upper bound can be extended to


:<math>k_{n+m} \leq k_m k_n</math>;
:<math>k_{n+m} \leq k_m k_n</math>;


this implies that <math>k_n^{1/n}</math> converges to a limit as <math>n</math> goes to infinity.
this implies that <math>k_n^{1/n}</math> converges to a limit as <math>n</math> goes to infinity.  


From a paper of [http://arxiv.org/abs/0901.2529 Dvir, Kopparty, Saraf, and Sudan] it follows that <math>k_n \geq 3^n / 2^n</math>, but this is superseded by the estimates given below.
== Lower Bounds ==


To each of the <math>(3^n-1)/2</math> directions in <math>{\mathbb F}_3^n</math> there correspond at least three pairs of elements in a Kakeya set, etermining this direction. Therefore, <math>\binom{k_n}2\ge 3(3^n-1)/2<math>, and hence  
To each of the <math>(3^n-1)/2</math> directions in <math>{\mathbb F}_3^n</math> there correspond at least three pairs of elements in a Kakeya set, determining this direction. Therefore, <math>\binom{k_n}{2}\ge 3\cdot(3^n-1)/2</math>, and hence  


:<math>k_n\gtsym \sqrt{3^{(n+1)/2}}</math>
:<math>k_n\ge 3^{(n+1)/2}.</math>


One can get essentially the same conclusion using the "bush" argument. There are <math>N := (3^n-1)/2</math> different directions. Take a line in every direction, let E be the union of these lines, and let <math>\mu</math> be the maximum multiplicity of these lines (i.e. the largest number of lines that are concurrent at a point). On the one hand, from double counting we see that E has cardinality at least <math>3N/\mu</math>. On the other hand, by considering the "bush" of lines emanating from a point with multiplicity <math>\mu</math>, we see that E has cardinality at least <math>2\mu+1</math>. If we minimise <math>\max(3N/\mu, 2\mu+1)</math> over all possible values of <math>\mu</math> one obtains approximately <math>\sqrt{6N} \approx 3^{(n+1)/2}</math> as a lower bound of |E|, which is asymptotically better than <math>(3/2)^n</math>.
One can derive essentially the same conclusion using the "bush" argument, as follows. Let <math>E\subset{\mathbb F}_3^n</math> be a Kakeya set, considered as a union of <math>N := (3^n-1)/2</math> lines in all different directions. Let <math>\mu</math> be the largest number of lines that are concurrent at a point of <math>E</math>. The number of point-line incidences is at most <math>|E|\mu</math> and at least <math>3N</math>, whence <math>|E|\ge 3N/\mu</math>. On the other hand, by considering only those points on the "bush" of lines emanating from a point with multiplicity <math>\mu</math>, we see that <math>|E|\ge 2\mu+1</math>. Comparing the two last bounds one obtains  
<math>|E|\gtrsim\sqrt{6N} \approx 3^{(n+1)/2}</math>.


Or, we can use the "slices" argument.  Let <math>A, B, C \subset ({\Bbb Z}/3{\Bbb Z})^{n-1}</math> be the three slices of a Kakeya set E.  We can form a graph G between A and B by connecting A and B by an edge if there is a line in E joining A and B.  The restricted sumset <math>\{a+b: (a,b) \in G \}</math> is essentially C, while the difference set <math>\{a-b: (a-b) \in G \}</math> is all of <math>({\Bbb Z}/3{\Bbb Z})^{n-1}</math>.  Using an estimate from [http://front.math.ucdavis.edu/math.CO/9906097 this paper of Katz-Tao], we conclude that <math>3^{n-1} \leq \max(|A|,|B|,|C|)^{11/6}</math>, leading to the bound <math>|E| \geq 3^{6(n-1)/11}</math>, which is asymptotically better still.
The better estimate  


== General upper bounds ==
:<math>k_n\ge (9/5)^n</math>
 
is obtained in [http://arxiv.org/abs/0901.2529 a paper of Dvir, Kopparty, Saraf, and Sudan]. (In general, they show that a Kakeya set in the <math>n</math>-dimensional vector space over the <math>q</math>-element field has at least <math>(q/(2-1/q))^n</math> elements).
 
A still better bound follows by using the "slices argument". Let <math>A,B,C\subset{\mathbb F}_3^{n-1}</math> be the three slices of a Kakeya set <math>E\subset{\mathbb F}_3^n</math>. Form a bipartite graph <math>G</math> with the partite sets <math>A</math> and <math>B</math> by connecting <math>a</math> and <math>b</math> by an edge if there is a line in <math>E</math> through <math>a</math> and <math>b</math>. The restricted sumset <math>\{a+b\colon (a,b)\in G\}</math> is contained in the set <math>-C</math>, while the difference set <math>\{a-b\colon (a,b)\in G\}</math> is all of <math>{\mathbb F}_3^{n-1}</math>. Using an estimate from [http://front.math.ucdavis.edu/math.CO/9906097 a paper of Katz-Tao], we conclude that <math>3^{n-1}\le\max(|A|,|B|,|C|)^{11/6}</math>, leading to <math>|E|\ge 3^{6(n-1)/11}</math>. Thus,
 
:<math>k_n \ge 3^{6(n-1)/11}.</math>
 
== Upper Bounds ==


We have
We have
Line 33: Line 42:
since the set of all vectors in <math>{\mathbb F}_3^n</math> such that at least one of the numbers <math>1</math> and <math>2</math> is missing among their coordinates is a Kakeya set.  
since the set of all vectors in <math>{\mathbb F}_3^n</math> such that at least one of the numbers <math>1</math> and <math>2</math> is missing among their coordinates is a Kakeya set.  


'''Question''': can the upper bound be strengthened to <math>k_{n+1}\le 2k_n+1</math>?
This estimate can be improved using an idea due to Ruzsa (seems to be unpublished). Namely, let <math>E:=A\cup B</math>, where <math>A</math> is the set of all those vectors with <math>r/3+O(\sqrt r)</math> coordinates equal to <math>1</math> and the rest equal to <math>0</math>, and <math>B</math> is the set of all those vectors with <math>2r/3+O(\sqrt r)</math> coordinates equal to <math>2</math> and the rest equal to <math>0</math>. Then <math>E</math>, being of size just about <math>(27/4)^{r/3}</math> (which is not difficult to verify using [[Stirling's formula]]), contains lines in a positive proportion of directions: for, a typical direction <math>d\in {\mathbb F}_3^n</math> can be represented as <math>d=d_1+2d_2</math> with <math>d_1,d_2\in A</math>, and then <math>d_1,d_1+d,d_1+2d\in E</math>. Now one can use the random rotations trick to get the rest of the directions in <math>E</math> (losing a polynomial factor in <math>n</math>).   
 
Another construction uses the "slices" idea and a construction of Imre Ruzsa.  Let <math>A, B \subset [3]^n</math> be the set of strings with <math>n/3+O(\sqrt{n})</math> 1's, <math>2n/3+O(\sqrt{n})</math> 0's, and no 2's; let <math>C \subset [3]^n</math> be the set of strings with <math>2n/3+O(\sqrt{n})</math> 2's, <math>n/3+O(\sqrt{n})</math> 0's, and no 1's, and let <math>E = \{0\} \times A \cup \{1\} \times B \cup \{2\} \times C</math>. From [[Stirling's formula]] we have <math>|E| = (27/4 + o(1))^{n/3}</math>.  Now I claim that for most <math>t \in [3]^{n-1}</math>, there exists an algebraic line in the direction (1,t).  Indeed, typically t will have <math>n/3+O(\sqrt{n})</math> 0s, <math>n/3+O(\sqrt{n})</math> 1s, and <math>n/3+O(\sqrt{n})</math> 2s, thus <math>t = e + 2f</math> where e and f are strings with <math>n/3 + O(\sqrt{n})</math> 1s and no 2s, with the 1-sets of e and f being disjoint.  One then checks that the line <math>(0,f), (1,e), (2,2e+2f)</math> lies in E.
 
This is already a positive fraction of directions in E.  One can use the random rotations trick to get the rest of the directions in E (losing a polynomial factor in n).   


Putting all this together, I think we have
Putting all this together, we seem to have


:<math>(3^{6/11} + o(1))^n \leq k_n \leq ( (27/4)^{1/3} + o(1))^n</math>
:<math>(3^{6/11} + o(1))^n \le k_n \le ( (27/4)^{1/3} + o(1))^n</math>


or  
or  


:<math>(1.8207\ldots+o(1))^n \leq k_n \leq (1.88988+o(1))^n</math>
:<math>(1.8207+o(1))^n \le k_n \le (1.8899+o(1))^n.</math>

Latest revision as of 23:35, 4 June 2009

A Kakeya set in [math]\displaystyle{ {\mathbb F}_3^n }[/math] is a subset [math]\displaystyle{ E\subset{\mathbb F}_3^n }[/math] that contains an algebraic line in every direction; that is, for every [math]\displaystyle{ d\in{\mathbb F}_3^n }[/math], there exists [math]\displaystyle{ e\in{\mathbb F}_3^n }[/math] such that [math]\displaystyle{ e,e+d,e+2d }[/math] all lie in [math]\displaystyle{ E }[/math]. Let [math]\displaystyle{ k_n }[/math] be the smallest size of a Kakeya set in [math]\displaystyle{ {\mathbb F}_3^n }[/math].

Clearly, we have [math]\displaystyle{ k_1=3 }[/math], and it is easy to see that [math]\displaystyle{ k_2=7 }[/math]. Using a computer, it is not difficult to find that [math]\displaystyle{ k_3=13 }[/math] and [math]\displaystyle{ k_4\le 27 }[/math]. Indeed, it seems likely that [math]\displaystyle{ k_4=27 }[/math] holds, meaning that in [math]\displaystyle{ {\mathbb F}_3^4 }[/math] one cannot get away with just [math]\displaystyle{ 26 }[/math] elements.

Basic Estimates

Trivially, we have

[math]\displaystyle{ k_n\le k_{n+1}\le 3k_n }[/math].

Since the Cartesian product of two Kakeya sets is another Kakeya set, the upper bound can be extended to

[math]\displaystyle{ k_{n+m} \leq k_m k_n }[/math];

this implies that [math]\displaystyle{ k_n^{1/n} }[/math] converges to a limit as [math]\displaystyle{ n }[/math] goes to infinity.

Lower Bounds

To each of the [math]\displaystyle{ (3^n-1)/2 }[/math] directions in [math]\displaystyle{ {\mathbb F}_3^n }[/math] there correspond at least three pairs of elements in a Kakeya set, determining this direction. Therefore, [math]\displaystyle{ \binom{k_n}{2}\ge 3\cdot(3^n-1)/2 }[/math], and hence

[math]\displaystyle{ k_n\ge 3^{(n+1)/2}. }[/math]

One can derive essentially the same conclusion using the "bush" argument, as follows. Let [math]\displaystyle{ E\subset{\mathbb F}_3^n }[/math] be a Kakeya set, considered as a union of [math]\displaystyle{ N := (3^n-1)/2 }[/math] lines in all different directions. Let [math]\displaystyle{ \mu }[/math] be the largest number of lines that are concurrent at a point of [math]\displaystyle{ E }[/math]. The number of point-line incidences is at most [math]\displaystyle{ |E|\mu }[/math] and at least [math]\displaystyle{ 3N }[/math], whence [math]\displaystyle{ |E|\ge 3N/\mu }[/math]. On the other hand, by considering only those points on the "bush" of lines emanating from a point with multiplicity [math]\displaystyle{ \mu }[/math], we see that [math]\displaystyle{ |E|\ge 2\mu+1 }[/math]. Comparing the two last bounds one obtains [math]\displaystyle{ |E|\gtrsim\sqrt{6N} \approx 3^{(n+1)/2} }[/math].

The better estimate

[math]\displaystyle{ k_n\ge (9/5)^n }[/math]

is obtained in a paper of Dvir, Kopparty, Saraf, and Sudan. (In general, they show that a Kakeya set in the [math]\displaystyle{ n }[/math]-dimensional vector space over the [math]\displaystyle{ q }[/math]-element field has at least [math]\displaystyle{ (q/(2-1/q))^n }[/math] elements).

A still better bound follows by using the "slices argument". Let [math]\displaystyle{ A,B,C\subset{\mathbb F}_3^{n-1} }[/math] be the three slices of a Kakeya set [math]\displaystyle{ E\subset{\mathbb F}_3^n }[/math]. Form a bipartite graph [math]\displaystyle{ G }[/math] with the partite sets [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] by connecting [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math] by an edge if there is a line in [math]\displaystyle{ E }[/math] through [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math]. The restricted sumset [math]\displaystyle{ \{a+b\colon (a,b)\in G\} }[/math] is contained in the set [math]\displaystyle{ -C }[/math], while the difference set [math]\displaystyle{ \{a-b\colon (a,b)\in G\} }[/math] is all of [math]\displaystyle{ {\mathbb F}_3^{n-1} }[/math]. Using an estimate from a paper of Katz-Tao, we conclude that [math]\displaystyle{ 3^{n-1}\le\max(|A|,|B|,|C|)^{11/6} }[/math], leading to [math]\displaystyle{ |E|\ge 3^{6(n-1)/11} }[/math]. Thus,

[math]\displaystyle{ k_n \ge 3^{6(n-1)/11}. }[/math]

Upper Bounds

We have

[math]\displaystyle{ k_n\le 2^{n+1}-1 }[/math]

since the set of all vectors in [math]\displaystyle{ {\mathbb F}_3^n }[/math] such that at least one of the numbers [math]\displaystyle{ 1 }[/math] and [math]\displaystyle{ 2 }[/math] is missing among their coordinates is a Kakeya set.

This estimate can be improved using an idea due to Ruzsa (seems to be unpublished). Namely, let [math]\displaystyle{ E:=A\cup B }[/math], where [math]\displaystyle{ A }[/math] is the set of all those vectors with [math]\displaystyle{ r/3+O(\sqrt r) }[/math] coordinates equal to [math]\displaystyle{ 1 }[/math] and the rest equal to [math]\displaystyle{ 0 }[/math], and [math]\displaystyle{ B }[/math] is the set of all those vectors with [math]\displaystyle{ 2r/3+O(\sqrt r) }[/math] coordinates equal to [math]\displaystyle{ 2 }[/math] and the rest equal to [math]\displaystyle{ 0 }[/math]. Then [math]\displaystyle{ E }[/math], being of size just about [math]\displaystyle{ (27/4)^{r/3} }[/math] (which is not difficult to verify using Stirling's formula), contains lines in a positive proportion of directions: for, a typical direction [math]\displaystyle{ d\in {\mathbb F}_3^n }[/math] can be represented as [math]\displaystyle{ d=d_1+2d_2 }[/math] with [math]\displaystyle{ d_1,d_2\in A }[/math], and then [math]\displaystyle{ d_1,d_1+d,d_1+2d\in E }[/math]. Now one can use the random rotations trick to get the rest of the directions in [math]\displaystyle{ E }[/math] (losing a polynomial factor in [math]\displaystyle{ n }[/math]).

Putting all this together, we seem to have

[math]\displaystyle{ (3^{6/11} + o(1))^n \le k_n \le ( (27/4)^{1/3} + o(1))^n }[/math]

or

[math]\displaystyle{ (1.8207+o(1))^n \le k_n \le (1.8899+o(1))^n. }[/math]