Estimating a sum: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
For any <math>\sigma, t>0</math> and natural number <math>N</math>, introduce the sum
For any <math>\sigma, t>0</math> and natural number <math>N</math>, introduce the sum


:<math>F_{\sigma,t}(N) := \sum_{n=1}^N \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}}.</math>
:<math>S_{\sigma,t}(N) := \sum_{n=1}^N \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}}.</math>


This sum appears a number of times in the Polymath15 project, and it is therefore of interest to estimate it.   
This sum appears a number of times in the Polymath15 project, and it is therefore of interest to estimate it.   


'''Lemma 1'''  Let <math>\sigma,t>0</math> and <math>N \geq N_0 \geq 1</math>.  Then
'''Lemma 1'''  Let <math>\sigma,t>0</math> and <math>N \geq N_0 \geq 1</math>.  Then
:<math> \sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} \leq F_{\sigma,t}(N) \leq
:<math> \sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} \leq S_{\sigma,t}(N) \leq
\sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \max( N_0^{1-\sigma - \frac{t}{4} \log \frac{N^2}{N_0}}, N^{1-\sigma - \frac{t}{4} \log N} ) \log \frac{N}{N_0}.
\sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \max( N_0^{1-\sigma - \frac{t}{4} \log \frac{N^2}{N_0}}, N^{1-\sigma - \frac{t}{4} \log N} ) \log \frac{N}{N_0}.
</math>
</math>


'''Proof''' The left-hand inequality is obvious.  To prove the right-hand inequality, observe (from writing the summand as <math>\frac{\exp( \frac{t}{4} (\log N - \log n)^2}{n^\sigma \exp(\frac{t}{4} \log^2 N)}</math>) that the summand is decreasing for <math>1 \leq n \leq N</math>, hence by the integral test one has
'''Proof''' The left-hand inequality is obvious.  To prove the right-hand inequality, observe (from writing the summand as <math>\frac{\exp( \frac{t}{4} (\log N - \log n)^2}{n^\sigma \exp(\frac{t}{4} \log^2 N)}</math>) that the summand is decreasing for <math>1 \leq n \leq N</math>, hence by the integral test one has
:<math>F_{\sigma,t}(N) \leq \sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \int_{N_0}^N \frac{1}{a^{\sigma + \frac{t}{4} \log \frac{N^2}{a}}}\ da.</math>
:<math>S_{\sigma,t}(N) \leq \sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \int_{N_0}^N \frac{1}{a^{\sigma + \frac{t}{4} \log \frac{N^2}{a}}}\ da.</math>
Making the change of variables <math>a = e^u</math>, the right-hand side becomes
Making the change of variables <math>a = e^u</math>, the right-hand side becomes
:<math>\sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \int_{\log N_0}^{\log N} \exp( (1-\sigma) u + \frac{t}{4} (u^2 - 2u \log N) )\ du.</math>
:<math>\sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \int_{\log N_0}^{\log N} \exp( (1-\sigma) u + \frac{t}{4} (u^2 - 2u \log N) )\ du.</math>
Line 20: Line 20:
Thus for instance if <math>\sigma = 0.7</math>, <math>t = 0.4</math>, and <math>N \geq N_0 = 2000</math>, one has
Thus for instance if <math>\sigma = 0.7</math>, <math>t = 0.4</math>, and <math>N \geq N_0 = 2000</math>, one has


:<math>F_{0.7, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.7 + 0.1 \log \frac{N^2}{n}}} + \max( 2000^{0.3 - 0.1 \log \frac{N^2}{2000}}, N^{0.3 - 0.1 \log N}) \log \frac{N}{2000}.  </math>
:<math>S_{0.7, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.7 + 0.1 \log \frac{N^2}{n}}} + \max( 2000^{0.3 - 0.1 \log \frac{N^2}{2000}}, N^{0.3 - 0.1 \log N}) \log \frac{N}{2000}.  </math>
One can compute numerically that the second term on the RHS is at most 0.0087, thus
One can compute numerically that the second term on the RHS is at most 0.0087, thus
:<math>F_{0.7, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.7 + 0.1 \log \frac{N^2}{n}}} + 0.0087</math>
:<math>S_{0.7, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.7 + 0.1 \log \frac{N^2}{n}}} + 0.0087</math>
for all <math>N \geq 2000</math>.  In particular
for all <math>N \geq 2000</math>.  In particular
:<math>F_{0.7, 0.4}(N) \leq F_{0.7, 0.4}(2000) + 0.0087 \leq 1.706.</math>
:<math>S_{0.7, 0.4}(N) \leq S_{0.7, 0.4}(2000) + 0.0087 \leq 1.706.</math>


Similarly one has
Similarly one has
:<math>F_{0.3, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.3 + 0.1 \log \frac{N^2}{n}}} + \max( 2000^{0.7 - 0.1 \log \frac{N^2}{2000}}, N^{0.7 - 0.1 \log N}) \log \frac{N}{2000}.</math>
:<math>S_{0.3, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.3 + 0.1 \log \frac{N^2}{n}}} + \max( 2000^{0.7 - 0.1 \log \frac{N^2}{2000}}, N^{0.7 - 0.1 \log N}) \log \frac{N}{2000}.</math>
The second term can be shown to be at most <math>0.253</math>, thus
The second term can be shown to be at most <math>0.253</math>, thus
:<math>F_{0.3, 0.4}(N) \leq F_{0.3, 0.4}(2000) + 0.253 \leq 3.469</math>
:<math>S_{0.3, 0.4}(N) \leq S_{0.3, 0.4}(2000) + 0.253 \leq 3.469</math>
for all <math>N \geq 2000</math>.
for all <math>N \geq 2000</math>.

Revision as of 23:12, 8 March 2018

For any [math]\displaystyle{ \sigma, t\gt 0 }[/math] and natural number [math]\displaystyle{ N }[/math], introduce the sum

[math]\displaystyle{ S_{\sigma,t}(N) := \sum_{n=1}^N \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}}. }[/math]

This sum appears a number of times in the Polymath15 project, and it is therefore of interest to estimate it.

Lemma 1 Let [math]\displaystyle{ \sigma,t\gt 0 }[/math] and [math]\displaystyle{ N \geq N_0 \geq 1 }[/math]. Then

[math]\displaystyle{ \sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} \leq S_{\sigma,t}(N) \leq \sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \max( N_0^{1-\sigma - \frac{t}{4} \log \frac{N^2}{N_0}}, N^{1-\sigma - \frac{t}{4} \log N} ) \log \frac{N}{N_0}. }[/math]

Proof The left-hand inequality is obvious. To prove the right-hand inequality, observe (from writing the summand as [math]\displaystyle{ \frac{\exp( \frac{t}{4} (\log N - \log n)^2}{n^\sigma \exp(\frac{t}{4} \log^2 N)} }[/math]) that the summand is decreasing for [math]\displaystyle{ 1 \leq n \leq N }[/math], hence by the integral test one has

[math]\displaystyle{ S_{\sigma,t}(N) \leq \sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \int_{N_0}^N \frac{1}{a^{\sigma + \frac{t}{4} \log \frac{N^2}{a}}}\ da. }[/math]

Making the change of variables [math]\displaystyle{ a = e^u }[/math], the right-hand side becomes

[math]\displaystyle{ \sum_{n=1}^{N_0} \frac{1}{n^{\sigma + \frac{t}{4} \log\frac{N^2}{n}}} + \int_{\log N_0}^{\log N} \exp( (1-\sigma) u + \frac{t}{4} (u^2 - 2u \log N) )\ du. }[/math]

The expression [math]\displaystyle{ (1-\sigma) u + \frac{t}{4} (u^2 - 2u \log N) }[/math] is convex in [math]\displaystyle{ u }[/math], and is thus bounded by the maximum of its values at the endpoints [math]\displaystyle{ u = \log N_0, \log N }[/math]; thus

[math]\displaystyle{ \exp( (1-\sigma) u + \frac{t}{4} (u^2 - 2u \log N) ) \leq \max( N_0^{1-\sigma - \frac{t}{4} \log \frac{N^2}{N_0}}, N^{1-\sigma - \frac{t}{4} \log N} ). }[/math]

The claim follows. [math]\displaystyle{ \Box }[/math]

Thus for instance if [math]\displaystyle{ \sigma = 0.7 }[/math], [math]\displaystyle{ t = 0.4 }[/math], and [math]\displaystyle{ N \geq N_0 = 2000 }[/math], one has

[math]\displaystyle{ S_{0.7, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.7 + 0.1 \log \frac{N^2}{n}}} + \max( 2000^{0.3 - 0.1 \log \frac{N^2}{2000}}, N^{0.3 - 0.1 \log N}) \log \frac{N}{2000}. }[/math]

One can compute numerically that the second term on the RHS is at most 0.0087, thus

[math]\displaystyle{ S_{0.7, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.7 + 0.1 \log \frac{N^2}{n}}} + 0.0087 }[/math]

for all [math]\displaystyle{ N \geq 2000 }[/math]. In particular

[math]\displaystyle{ S_{0.7, 0.4}(N) \leq S_{0.7, 0.4}(2000) + 0.0087 \leq 1.706. }[/math]

Similarly one has

[math]\displaystyle{ S_{0.3, 0.4}(N) \leq \sum_{n=1}^{2000} \frac{1}{n^{0.3 + 0.1 \log \frac{N^2}{n}}} + \max( 2000^{0.7 - 0.1 \log \frac{N^2}{2000}}, N^{0.7 - 0.1 \log N}) \log \frac{N}{2000}. }[/math]

The second term can be shown to be at most [math]\displaystyle{ 0.253 }[/math], thus

[math]\displaystyle{ S_{0.3, 0.4}(N) \leq S_{0.3, 0.4}(2000) + 0.253 \leq 3.469 }[/math]

for all [math]\displaystyle{ N \geq 2000 }[/math].