Riemann-Siegel formula: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
Created page with "'''Lemma 1''' For any complex number <math>z</math>, one has :<math> \int_{0 \uprightarrow 1} \frac{e^{i\pi u^2} + 2\pi i z u}}{e^{i\pi u} - e^{-i\pi u}}\ du = \frac{e^{i\pi z..."
 
No edit summary
Line 1: Line 1:
'''Lemma 1''' For any complex number <math>z</math>, one has
'''Lemma 1''' For any complex number <math>z</math>, one has
:<math> \int_{0 \uprightarrow 1} \frac{e^{i\pi u^2} + 2\pi i z u}}{e^{i\pi u} - e^{-i\pi u}}\ du = \frac{e^{i\pi z} - e^{-i\pi z^2}}{e^{i \pi z} - e^{-i\pi z}}</math>
:<math> \int_{0 \nearrow 1} \frac{e^{i\pi u^2} + 2\pi i z u}}{e^{i\pi u} - e^{-i\pi u}}\ du = \frac{e^{i\pi z} - e^{-i\pi z^2}}{e^{i \pi z} - e^{-i\pi z}}</math>
where <math>0 \uprightarrow 1</math> denotes a line passing through the line segment <math>[0,1]</math> oriented in the direction <math>e^{i\pi/4}</math>.
where <math>0 \nearrow 1</math> denotes a line passing through the line segment <math>[0,1]</math> oriented in the direction <math>e^{i\pi/4}</math>.


'''Proof''' ... <math>\Box</math>
'''Proof''' ... <math>\Box</math>


We can rearrange the above lemma as
We can rearrange the above lemma as
:<math> \frac{e^{i\pi z}}{e^{i\pi z} -e^{-i\pi z}} = \int_{0 \uprightarrow 1} \frac{e^{i\pi u^2} + 2\pi i z u}}{e^{i\pi u} - e^{-i\pi u}}\ du + \frac{e^{-i\pi z^2}}{e^{i\pi z} - e^{-i\pi z}}.</math>
:<math> \frac{e^{i\pi z}}{e^{i\pi z} -e^{-i\pi z}} = \int_{0 \nearrow 1} \frac{e^{i\pi u^2} + 2\pi i z u}}{e^{i\pi u} - e^{-i\pi u}}\ du + \frac{e^{-i\pi z^2}}{e^{i\pi z} - e^{-i\pi z}}.</math>


Now let <math>s</math> be a complex number with <math>\mathrm{Re} s > 1</math>.  Multiplying both sides of the above equation by <math>(1 + e^{-i\pi s) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) z^{s-1}<math> and integrating on the ray <math>\upleftarrow 0</math> from <math>0</math> in the direction <math>e^{3\pi i/4}</math>, we have
Now let <math>s</math> be a complex number with <math>\mathrm{Re} s > 1</math>.  Multiplying both sides of the above equation by <math>(1 + e^{-i\pi s) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) z^{s-1}<math> and integrating on the ray <math>\nwarrow 0</math> from <math>0</math> in the direction <math>e^{3\pi i/4}</math>, we have
:<math> A = B + C</math>
:<math> A = B + C</math>
where
where
:<math>A := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\upleftarrow 0} \frac{z^{s-1} e^{i\pi z}}{e^{i\pi z} -e^{-i\pi z}}\ dz</math>
:<math>A := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\nwarrow 0} \frac{z^{s-1} e^{i\pi z}}{e^{i\pi z} -e^{-i\pi z}}\ dz</math>
:<math>B := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\upleftarrow 0} \int_{0 \uprightarrow 1} \frac{e^{i\pi u^2} + 2\pi i z u} z^{s-1}}{e^{i\pi u} - e^{-i\pi u}}\ du dz</math>
:<math>B := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\nwarrow 0} \int_{0 \nearrow 1} \frac{e^{i\pi u^2} + 2\pi i z u} z^{s-1}}{e^{i\pi u} - e^{-i\pi u}}\ du dz</math>
:<math>C := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\upleftarrow 0} \frac{z^{s-1} e^{-i\pi z^2}}{e^{i\pi z} -e^{-i\pi z}}\ dz.</math>
:<math>C := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\nwarrow 0} \frac{z^{s-1} e^{-i\pi z^2}}{e^{i\pi z} -e^{-i\pi z}}\ dz.</math>


'''Lemma 2''' For any <math>u</math> to the right of the line <math>e^{i\pi/4} \R<math>, We have
'''Lemma 2''' For any <math>u</math> to the right of the line <math>e^{i\pi/4} \R<math>, We have
:<math> (1 + e^{-i\pi s) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\upleftarrow 0} z^{s-1} e^{2\pi i z u}\ du = \pi^{-s/2} \Gamma(s/2) u^{-s}.</math>
:<math> (1 + e^{-i\pi s) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\nwarrow 0} z^{s-1} e^{2\pi i z u}\ du = \pi^{-s/2} \Gamma(s/2) u^{-s}.</math>


'''Proof''' ... <math>\Box</math>
'''Proof''' ... <math>\Box</math>


From this Lemma and Fubini (carefully verifying the absolute integrability) we have
From this Lemma and Fubini (carefully verifying the absolute integrability) we have
:<math>B = \pi^{-s/2} \Gamma(s/2) \int_{0 \uprightarrow 1} \frac{u^{-s} e^{i\pi u^2}}{e^{i\pi u} - e^{-i\pi u}}\ du.</math>
:<math>B = \pi^{-s/2} \Gamma(s/2) \int_{0 \nearrow 1} \frac{u^{-s} e^{i\pi u^2}}{e^{i\pi u} - e^{-i\pi u}}\ du.</math>
Similarly, using the geometric series formula
Similarly, using the geometric series formula
:<math> \frac{e^{i\pi z}}{e^{i\pi z}-e^{-i\pi z}} = -\sum_{n=1}^\infty e^{2\pi i n z}</math>
:<math> \frac{e^{i\pi z}}{e^{i\pi z}-e^{-i\pi z}} = -\sum_{n=1}^\infty e^{2\pi i n z}</math>
and Fubini again one has
and Fubini again one has
:<math>A = -\pi^{-s/2} \Gamma(s/2) \zeta(s).</math>
:<math>A = -\pi^{-s/2} \Gamma(s/2) \zeta(s).</math>
Finally by reflecting the ray <math>\upleftarrow 0</math> around the origin and then shifting slightly to the right we have
Finally by reflecting the ray <math>\nwarrow 0</math> around the origin and then shifting slightly to the right we have
:<math>C = \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{0 \upleftarrow 1} \frac{z^{s-1} e^{-i\pi z^2}}{e^{i\pi z} -e^{-i\pi z}}\ dz,</math>
:<math>C = \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{0 \nwarrow 1} \frac{z^{s-1} e^{-i\pi z^2}}{e^{i\pi z} -e^{-i\pi z}}\ dz,</math>
where <math>0 \upleftarrow 1</math> is a line in the direction <math>e^{3\pi i 4}</math> passing through <math>[0,1]</math>.  By analytic continuation we conclude the Riemann-Siegel formula
where <math>0 \nwarrow 1</math> is a line in the direction <math>e^{3\pi i 4}</math> passing through <math>[0,1]</math>.  By analytic continuation we conclude the Riemann-Siegel formula
:<math> \pi^{-s/2} \Gamma(s/2) \zeta(s) = - \pi^{-s/2} \Gamma(s/2) \int_{0 \uprightarrow 1} \frac{u^{-s} e^{i\pi u^2}}{e^{i\pi u} - e^{-i\pi u}}\ du -  
:<math> \pi^{-s/2} \Gamma(s/2) \zeta(s) = - \pi^{-s/2} \Gamma(s/2) \int_{0 \nearrow 1} \frac{u^{-s} e^{i\pi u^2}}{e^{i\pi u} - e^{-i\pi u}}\ du -  
\pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{0 \upleftarrow 1} \frac{z^{s-1} e^{-i\pi z^2}}{e^{-i\pi z} -e^{i\pi z}}\ dz.</math>
\pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{0 \nwarrow 1} \frac{z^{s-1} e^{-i\pi z^2}}{e^{-i\pi z} -e^{i\pi z}}\ dz.</math>

Revision as of 00:17, 10 March 2018

Lemma 1 For any complex number [math]\displaystyle{ z }[/math], one has

[math]\displaystyle{ \int_{0 \nearrow 1} \frac{e^{i\pi u^2} + 2\pi i z u}}{e^{i\pi u} - e^{-i\pi u}}\ du = \frac{e^{i\pi z} - e^{-i\pi z^2}}{e^{i \pi z} - e^{-i\pi z}} }[/math]

where [math]\displaystyle{ 0 \nearrow 1 }[/math] denotes a line passing through the line segment [math]\displaystyle{ [0,1] }[/math] oriented in the direction [math]\displaystyle{ e^{i\pi/4} }[/math].

Proof ... [math]\displaystyle{ \Box }[/math]

We can rearrange the above lemma as

[math]\displaystyle{ \frac{e^{i\pi z}}{e^{i\pi z} -e^{-i\pi z}} = \int_{0 \nearrow 1} \frac{e^{i\pi u^2} + 2\pi i z u}}{e^{i\pi u} - e^{-i\pi u}}\ du + \frac{e^{-i\pi z^2}}{e^{i\pi z} - e^{-i\pi z}}. }[/math]

Now let [math]\displaystyle{ s }[/math] be a complex number with [math]\displaystyle{ \mathrm{Re} s \gt 1 }[/math]. Multiplying both sides of the above equation by [math]\displaystyle{ (1 + e^{-i\pi s) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) z^{s-1}\lt math\gt and integrating on the ray \lt math\gt \nwarrow 0 }[/math] from [math]\displaystyle{ 0 }[/math] in the direction [math]\displaystyle{ e^{3\pi i/4} }[/math], we have

[math]\displaystyle{ A = B + C }[/math]

where

[math]\displaystyle{ A := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\nwarrow 0} \frac{z^{s-1} e^{i\pi z}}{e^{i\pi z} -e^{-i\pi z}}\ dz }[/math]
[math]\displaystyle{ B := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\nwarrow 0} \int_{0 \nearrow 1} \frac{e^{i\pi u^2} + 2\pi i z u} z^{s-1}}{e^{i\pi u} - e^{-i\pi u}}\ du dz }[/math]
[math]\displaystyle{ C := (1 + e^{-i\pi s}) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\nwarrow 0} \frac{z^{s-1} e^{-i\pi z^2}}{e^{i\pi z} -e^{-i\pi z}}\ dz. }[/math]

Lemma 2 For any [math]\displaystyle{ u }[/math] to the right of the line [math]\displaystyle{ e^{i\pi/4} \R\lt math\gt , We have :\lt math\gt (1 + e^{-i\pi s) \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{\nwarrow 0} z^{s-1} e^{2\pi i z u}\ du = \pi^{-s/2} \Gamma(s/2) u^{-s}. }[/math]

Proof ... [math]\displaystyle{ \Box }[/math]

From this Lemma and Fubini (carefully verifying the absolute integrability) we have

[math]\displaystyle{ B = \pi^{-s/2} \Gamma(s/2) \int_{0 \nearrow 1} \frac{u^{-s} e^{i\pi u^2}}{e^{i\pi u} - e^{-i\pi u}}\ du. }[/math]

Similarly, using the geometric series formula

[math]\displaystyle{ \frac{e^{i\pi z}}{e^{i\pi z}-e^{-i\pi z}} = -\sum_{n=1}^\infty e^{2\pi i n z} }[/math]

and Fubini again one has

[math]\displaystyle{ A = -\pi^{-s/2} \Gamma(s/2) \zeta(s). }[/math]

Finally by reflecting the ray [math]\displaystyle{ \nwarrow 0 }[/math] around the origin and then shifting slightly to the right we have

[math]\displaystyle{ C = \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{0 \nwarrow 1} \frac{z^{s-1} e^{-i\pi z^2}}{e^{i\pi z} -e^{-i\pi z}}\ dz, }[/math]

where [math]\displaystyle{ 0 \nwarrow 1 }[/math] is a line in the direction [math]\displaystyle{ e^{3\pi i 4} }[/math] passing through [math]\displaystyle{ [0,1] }[/math]. By analytic continuation we conclude the Riemann-Siegel formula

[math]\displaystyle{ \pi^{-s/2} \Gamma(s/2) \zeta(s) = - \pi^{-s/2} \Gamma(s/2) \int_{0 \nearrow 1} \frac{u^{-s} e^{i\pi u^2}}{e^{i\pi u} - e^{-i\pi u}}\ du - \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \int_{0 \nwarrow 1} \frac{z^{s-1} e^{-i\pi z^2}}{e^{-i\pi z} -e^{i\pi z}}\ dz. }[/math]