Zero-free regions: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 175: Line 175:
| Triangle inequality bound on <math>A^{eff}+B^{eff} / B^{eff}_0</math> and upper bounds on error terms
| Triangle inequality bound on <math>A^{eff}+B^{eff} / B^{eff}_0</math> and upper bounds on error terms
| Would in principle show <math>\Lambda \leq 0.33205</math> if the matching barrier could be established
| Would in principle show <math>\Lambda \leq 0.33205</math> if the matching barrier could be established
|-
| Apr 9 2018
| 0.2
| <math>y \geq 0.4</math>
| <math>N \geq 3 \times 10^5</math>
| [https://terrytao.wordpress.com/2018/03/28/polymath15-seventh-thread-going-below-0-48/#comment-495723 Tao]
| Triangle inequality bound on <math>A^{eff}+B^{eff} / B^{eff}_0</math> and upper bounds on error terms
|
|}
|}


[[Category:Polymath15]]
[[Category:Polymath15]]

Revision as of 18:37, 9 April 2018

The table below lists various regions of the [math]\displaystyle{ (t,y,x) }[/math] parameter space where [math]\displaystyle{ H_t(x+iy) }[/math] is known to be non-zero. In some cases the parameter

[math]\displaystyle{ N := \lfloor \sqrt{\frac{x}{4\pi} + \frac{t}{16}} \rfloor }[/math]

is used instead of [math]\displaystyle{ x }[/math]. The mesh evaluation techniques also require rigorous upper bounds on derivatives. In some cases the spacing of the mesh is fixed; in other cases it is adaptive based on the current value of the evaluation and on the derivative bound.


Date [math]\displaystyle{ t }[/math] [math]\displaystyle{ y }[/math] [math]\displaystyle{ x }[/math] From Method Comments
1950 [math]\displaystyle{ t \geq 0 }[/math] [math]\displaystyle{ y \gt \sqrt{\max(1-2t,0)} }[/math] Any De Bruijn Theorem 13 of de Bruijn Proves [math]\displaystyle{ \Lambda \leq 1/2 }[/math].
2004 0 [math]\displaystyle{ y\gt 0 }[/math] [math]\displaystyle{ 0 \leq x \leq 4.95 \times 10^{11} }[/math] Gourdon-Demichel Numerical verification of RH & Riemann-von Mangoldt formula Results have not been independently verified
2009 [math]\displaystyle{ t \gt 0 }[/math] [math]\displaystyle{ y \gt 0 }[/math] [math]\displaystyle{ x \geq C(t) }[/math] Ki-Kim-Lee Theorem 1.3 of Ki-Kim-Lee [math]\displaystyle{ C(t) }[/math] is not given explicitly. Also they show [math]\displaystyle{ \Lambda \lt 1/2 }[/math].
2017 0 [math]\displaystyle{ y\gt 0 }[/math] [math]\displaystyle{ 0 \leq x \leq 6.1 \times 10^{10} }[/math] Platt Numerical verification of the Riemann hypothesis
Mar 7 2018 0.4 0.4 [math]\displaystyle{ N \geq 2000 }[/math] ([math]\displaystyle{ x \geq 5.03 \times 10^7 }[/math]) Tao Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and analytic upper bounds on error terms Can be extended to the range [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math]
Mar 10 2018 0.4 0.4 [math]\displaystyle{ 151 \leq N \leq 300 }[/math] ([math]\displaystyle{ 2.87 \times 10^5 \leq x \leq 1.13 \times 10^6 }[/math]) KM Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Mar 11 2018 0.4 0.4 [math]\displaystyle{ 300 \leq N \leq 2000 }[/math] ([math]\displaystyle{ 1.13 \times 10^6 \leq x \leq 5.03 \times 10^7 }[/math]) KM Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms Should extend to the range [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math]
Mar 11 2018 0.4 0.4 [math]\displaystyle{ 20 \leq N \leq 150 }[/math] ([math]\displaystyle{ 5026 \leq x \leq 2.87 \times 10^5 }[/math]) Rudolph & KM Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Mar 11 2018 0.4 0.4 [math]\displaystyle{ 11 \leq N \leq 19 }[/math] ([math]\displaystyle{ 1520 \leq x \leq 5026 }[/math]) Rudolph & KM Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Mar 22 2018 0.4 0.4 [math]\displaystyle{ x \leq 1000 }[/math] Anon/David/KM Mesh evaluation of [math]\displaystyle{ H_t }[/math]
Mar 22 2018 0.4 0.4 [math]\displaystyle{ 1000 \leq x \leq 1600 }[/math] Rudolph Mesh evaluation of [math]\displaystyle{ H_t }[/math]
Mar 22 2018 0.4 0.4 [math]\displaystyle{ 8 \leq N \leq 10 }[/math] ([math]\displaystyle{ 803 \leq x \leq 1520 }[/math]) Rudolph Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Mar 23 2018 0.4 0.4 [math]\displaystyle{ 20 \leq x \leq 1000 }[/math] Anonymous Mesh evaluation of [math]\displaystyle{ H_t }[/math]
Mar 23 2018 [math]\displaystyle{ t \gt 0 }[/math] [math]\displaystyle{ y \gt 0 }[/math] [math]\displaystyle{ x \gt \exp(C/t) }[/math] Tao Analytic bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and error terms; argument principle [math]\displaystyle{ C }[/math] is in principle an explicit absolute constant
Mar 27 2018 0.4 [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] [math]\displaystyle{ 7 \leq N \leq 300 }[/math] ([math]\displaystyle{ 615 \leq x \leq 1.13 \times 10^6 }[/math]) KM Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms; argument principle
Mar 27 2018 0.4 [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] [math]\displaystyle{ 0 \leq x \leq 1000 }[/math] Anonymous Mesh evaluation of [math]\displaystyle{ H_t }[/math]; argument principle Completes proof of [math]\displaystyle{ \Lambda \leq 0.48 }[/math]!
Mar 31 2018 [math]\displaystyle{ 0 \leq t \leq 0.4 }[/math] [math]\displaystyle{ 0.4 \leq y \leq 1 }[/math] [math]\displaystyle{ 10^6 \leq x \leq 10^6 + 1 }[/math] KM Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms; argument principle
Mar 31 2018 0.4 [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] [math]\displaystyle{ 0 \leq x \leq 3000 }[/math] Rudolph Third approach to [math]\displaystyle{ H_t }[/math]; argument principle
Apr 6 2018 [math]\displaystyle{ 0 \leq t \leq 0.2 }[/math] [math]\displaystyle{ 0.4 \leq y \leq 1 }[/math] [math]\displaystyle{ 5 \times 10^9 \leq x \leq 5 \times 10^9+1 }[/math] KM, Rudolph, David, Anonymous Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms; argument principle
Apr 6 2018 0.2 0.4 [math]\displaystyle{ N \geq 300000 (x \geq 1.13 \times 10^{12}) }[/math] KM Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Apr 7 2018 0.29 [math]\displaystyle{ y \geq 0.29 }[/math] [math]\displaystyle{ N \geq 19947 }[/math] Anonymous Triangle inequality bound on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms Would in principle show [math]\displaystyle{ \Lambda \leq 0.33205 }[/math] if the matching barrier could be established
Apr 9 2018 0.2 [math]\displaystyle{ y \geq 0.4 }[/math] [math]\displaystyle{ N \geq 3 \times 10^5 }[/math] Tao Triangle inequality bound on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms