Experimental results: Difference between revisions
Added numbers up to 450 |
Divided page into sections and subsections |
||
Line 1: | Line 1: | ||
To return to the main Polymath5 page, click [[The Erdős discrepancy problem|here]]. | To return to the main Polymath5 page, click [[The Erdős discrepancy problem|here]]. | ||
==Different displays of a long low-discrepancy sequence== | |||
It would be good to have some long sequences with low discrepancy displayed nicely here (or on subsidiary pages) in tabular form, together with discussions about the structures that can be found in these sequences. For now, here is the current record not displayed in a particularly helpful way. It is a sequence of discrepancy 2 and length 1124. | It would be good to have some long sequences with low discrepancy displayed nicely here (or on subsidiary pages) in tabular form, together with discussions about the structures that can be found in these sequences. For now, here is the current record not displayed in a particularly helpful way. It is a sequence of discrepancy 2 and length 1124. | ||
===The raw sequence=== | |||
+ - + + - - - - + + - + + + - - + - + + - - - + - + + - + - | + - + + - - - - + + - + + + - - + - + + - - - + - + + - + - | ||
Line 41: | Line 45: | ||
+ - + - - - + - + + + + - + - - - - + - + + - + + - - + + - | + - + - - - + - + + + + - + - - - - + - + + - + + - - + + - | ||
+ + - + - - + - + + - + - - | + + - + - - + - + + - + - - | ||
===The sequence, together with the corresponding integers=== | |||
Here's a slightly more helpful (to start with -- it would be great if we could all chip in a bit and finish it) display: | Here's a slightly more helpful (to start with -- it would be great if we could all chip in a bit and finish it) display: | ||
Line 82: | Line 88: | ||
+ - + - - - + - + + + + - + - - - - + - + + - + + - - + + - | + - + - - - + - + + + + - + - - - - + - + + - + + - - + + - | ||
+ + - + - - + - + + - + - - | + + - + - - + - + + - + - - | ||
===Links to other displays and visually displayed information about the sequence=== | |||
Here is an alternate formatting. [http://numberwarrior.wordpress.com/files/2009/12/longsequence.png Link]. | Here is an alternate formatting. [http://numberwarrior.wordpress.com/files/2009/12/longsequence.png Link]. | ||
Here is a Rauzy tree that conveys information about subsequences of the sequence: [http://obryant.wordpress.com/2010/01/09/a-rauzy-tree/ Link]. |
Revision as of 02:57, 9 January 2010
To return to the main Polymath5 page, click here.
Different displays of a long low-discrepancy sequence
It would be good to have some long sequences with low discrepancy displayed nicely here (or on subsidiary pages) in tabular form, together with discussions about the structures that can be found in these sequences. For now, here is the current record not displayed in a particularly helpful way. It is a sequence of discrepancy 2 and length 1124.
The raw sequence
+ - + + - - - - + + - + + + - - + - + + - - - + - + + - + - - + + - + - - + - - + + - + + - - - + + + - - + - + - - + + + + - - + - - + + - - + + + - - + + - + - - + - - + + - + - - + - + + + - - + - + - - + + - - - + + - + + + - - - + - - + - + + + + - - - - + + - + + + - - + - - + - - + - + - + + - + + + - - - - + + + + - - - + + - + - - + - + + - - + - + + - + - + - + + - - - + + - + + - - + - - + - - + + + + - + - - + - - + + - - + - + + - - - + - + + - + + + - - + + - - + - - + - + + - - + - + + - + + - - + - - + - + + - - + + - + - + - - + - + + + - - + - + + - - - - + + - - + - + + - + + - - + - + + - - + + - + - - + - + - - + + - - + - + + + - + - - + - + - - + + + + - - - + + - + - - + - + + - - + - + + - + + - - + - - + - + + - - + + - - - + + - - + - + + - + + - - + - - + + + + - - - - + + - + + - + + - - + - - + + - - - + + - + + - - + - + + - + - - - + - + + - + + - - + - - + - + + - - + + - + + + - - - + - + + - + + - - + - - - + + + - - + - + - - + + + - + - + + - + - - - + + - + - + + - - + - - + - + + - - + - + - + + - + - + - - + - + + - - + - - + - + + + - - - + + - + + + - + - - + - + + - - + - + + - + - - - + - + + - + + - - + - - - + + + - - + - + + - - + + - + - + + - + - - - + - - + - + + - - + - + + - + + - - + - + + - + + - - + - - + - + + - - + - - + - + + - + - - + + - + + - - + - - + - + + - - + - + + - + + - - + - + + - - + + - + - - + - + + - - + - - + - + + - - + - + + - + + - + + - - + - + + - - + - - + - + + - - + - + - - + + + - + - - + - + + - - + - + - - + + + - - - + + - + + - - + + - + - + + - - + - - + - - + - + + - + - - + + + - + - - + - + + - - + - + - - + + - - + - + + - + + - - + + - + - - + - - + - + + - + + - - + - + + - + + - - + - - + + + - - - + - - + - + + - - + + + + - + - - + + - - + - + + - - + - - + - + + - - + - + + - + + - - + - - + - + + - - - + + - - + + - - + - + + - + + - - + - - + - + + + - + - - + - + + - - + - + + - + - + - - + - + - + + - - + - + - - + + + - + - - - + + + - - + - - + - + + - - + + + + - + - - - + - + + - + + - - + - - + + + - - - + - - + - + + + - + - + + - + - - - + - - + + + + - - + - + + - - + - + + - + - - + - + + - - - + - - + + - + - + + - + - - - + - + + + + - + - - - - + - + + - + + - - + + - + + - + - - + - + + - + - -
The sequence, together with the corresponding integers
Here's a slightly more helpful (to start with -- it would be great if we could all chip in a bit and finish it) display:
1+ 2- 3+ 4+ 5- 6- 7- 8- 9+ 10+ 11- 12+ 13+ 14+ 15- 16- 17+ 18- 19+ 20+ 21- 22- 23- 24+ 25- 26+ 27+ 28- 29+ 30- 31- 32+ 33+ 34- 35+ 36- 37- 38+ 39- 40- 41+ 42+ 43- 44+ 45+ 46- 47- 48- 49+ 50+ 51+ 52- 53- 54+ 55- 56+ 57- 58- 59+ 60+ 61+ 62+ 63- 64- 65+ 66- 67- 68+ 69+ 70- 71- 72+ 73+ 74+ 75- 76- 77+ 78+ 79- 80+ 81- 82- 83+ 84- 85- 86+ 87+ 88- 89+ 90- 91- 92+ 93- 94+ 95+ 96+ 97- 98- 99+ 100- 101+ 102- 103- 104+ 105+ 106- 107- 108- 109+ 110+ 111- 112+ 113+ 114+ 115- 116- 117- 118+ 119- 120- 121+ 122- 123+ 124+ 125+ 126+ 127- 128- 129- 130- 131+ 132+ 133- 134+ 135+ 136+ 137- 138- 139+ 140- 141- 142+ 143- 144- 145+ 146- 147+ 148- 149+ 150+ 151- 152+ 153+ 154+ 155- 156- 157- 158- 159+ 160+ 161+ 162+ 163- 164- 165- 166+ 167+ 168- 169+ 170- 171- 172+ 173- 174+ 175+ 176- 177- 178+ 179- 180+ 181+ 182- 183+ 184- 185+ 186- 187+ 188+ 189- 190- 191- 192+ 193+ 194- 195+ 196+ 197- 198- 199+ 200- 201- 202+ 203- 204- 205+ 206+ 207+ 208+ 209- 210+ 211- 212- 213+ 214- 215- 216+ 217+ 218- 219- 220+ 221- 222+ 223+ 224- 225- 226- 227+ 228- 229+ 230+ 231- 232+ 233+ 234+ 235- 236- 237+ 238+ 239- 240- 241+ 242- 243- 244+ 245- 246+ 247+ 248- 249- 250+ 251- 252+ 253+ 254- 255+ 256+ 257- 258- 259+ 260- 261- 262+ 263- 264+ 265+ 266- 267- 268+ 269+ 270- 271+ 272- 273+ 274- 275- 276+ 277- 278+ 279+ 280+ 281- 282- 283+ 284- 285+ 286+ 287- 288- 289- 290- 291+ 292+ 293- 294- 295+ 296- 297+ 298+ 299- 300+ 301+ 302- 303- 304+ 305- 306+ 307+ 308- 309- 310+ 311+ 312- 313+ 314- 315- 316+ 317- 318+ 319- 320- 321+ 322+ 323- 324- 325+ 326- 327+ 328+ 329+ 330- 331+ 332- 333- 334+ 335- 336+ 337- 338- 339+ 340+ 341+ 342+ 343- 344- 345- 346+ 347+ 348- 349+ 350- 351- 352+ 353- 354+ 355+ 356- 357- 358+ 359- 360+ 361+ 362- 363+ 364+ 365- 366- 367+ 368- 369- 370+ 371- 372+ 373+ 374- 375- 376+ 377+ 378- 379- 380- 381+ 382+ 383- 384- 385+ 386- 387+ 388+ 389- 390+ 391+ 392- 393- 394+ 395- 396- 397+ 398+ 399+ 400+ 401- 402- 403- 404- 405+ 406+ 407- 408+ 409+ 410- 411+ 412+ 413- 414- 415+ 416- 417- 418+ 419+ 420- 421- 422- 423+ 424+ 425- 426+ 427+ 428- 429- 430+ 431- 432+ 433+ 434- 435+ 436- 437- 438- 439+ 440- 441+ 442+ 443- 444+ 445+ 446- 447- 448+ 449- 450- + - + + - - + + - + + + - - - + - + + - + + - - + - - - + + + - - + - + - - + + + - + - + + - + - - - + + - + - + + - - + - - + - + + - - + - + - + + - + - + - - + - + + - - + - - + - + + + - - - + + - + + + - + - - + - + + - - + - + + - + - - - + - + + - + + - - + - - - + + + - - + - + + - - + + - + - + + - + - - - + - - + - + + - - + - + + - + + - - + - + + - + + - - + - - + - + + - - + - - + - + + - + - - + + - + + - - + - - + - + + - - + - + + - + + - - + - + + - - + + - + - - + - + + - - + - - + - + + - - + - + + - + + - + + - - + - + + - - + - - + - + + - - + - + - - + + + - + - - + - + + - - + - + - - + + + - - - + + - + + - - + + - + - + + - - + - - + - - + - + + - + - - + + + - + - - + - + + - - + - + - - + + - - + - + + - + + - - + + - + - - + - - + - + + - + + - - + - + + - + + - - + - - + + + - - - + - - + - + + - - + + + + - + - - + + - - + - + + - - + - - + - + + - - + - + + - + + - - + - - + - + + - - - + + - - + + - - + - + + - + + - - + - - + - + + + - + - - + - + + - - + - + + - + - + - - + - + - + + - - + - + - - + + + - + - - - + + + - - + - - + - + + - - + + + + - + - - - + - + + - + + - - + - - + + + - - - + - - + - + + + - + - + + - + - - - + - - + + + + - - + - + + - - + - + + - + - - + - + + - - - + - - + + - + - + + - + - - - + - + + + + - + - - - - + - + + - + + - - + + - + + - + - - + - + + - + - -
Links to other displays and visually displayed information about the sequence
Here is an alternate formatting. Link.
Here is a Rauzy tree that conveys information about subsequences of the sequence: Link.