The first 1124-sequence: Difference between revisions
m →Status: spelling fixes |
|||
Line 67: | Line 67: | ||
Here is an alternate formatting. [http://numberwarrior.wordpress.com/files/2009/12/longsequence.png Link]. | Here is an alternate formatting. [http://numberwarrior.wordpress.com/files/2009/12/longsequence.png Link]. | ||
[http://spreadsheets.google.com/ccc?key=0AkbsKAn5VTtvdGpoOG9xYWlUYTNpa1I0UktEMUsxZmc&hl=en The sequence in groups of 24] (Google Docs format). | [http://spreadsheets.google.com/ccc?key=0AkbsKAn5VTtvdGpoOG9xYWlUYTNpa1I0UktEMUsxZmc&hl=en The sequence in groups of 24 and in colour] (Google Docs format). | ||
[http://go2.wordpress.com/?id=725X1342&site=gowers.wordpress.com&url=http%3A%2F%2Fspreadsheets.google.com%2Fccc%3Fkey%3D0AkbsKAn5VTtvdDdrTDd1YmM3bGZESEFwZWhnSVBZMEE%26hl%3Den Multiples of 2 only]. | [http://go2.wordpress.com/?id=725X1342&site=gowers.wordpress.com&url=http%3A%2F%2Fspreadsheets.google.com%2Fccc%3Fkey%3D0AkbsKAn5VTtvdDdrTDd1YmM3bGZESEFwZWhnSVBZMEE%26hl%3Den Multiples of 2 only]. | ||
Line 73: | Line 73: | ||
Here is a Rauzy tree that conveys information about subsequences of the sequence: [http://obryant.wordpress.com/2010/01/09/a-rauzy-tree/ Link]. | Here is a Rauzy tree that conveys information about subsequences of the sequence: [http://obryant.wordpress.com/2010/01/09/a-rauzy-tree/ Link]. | ||
== Relevant code == | == Relevant code == | ||
The code(s) (or a link to the code(s)) used to find this sequence should be posted here. | The code(s) (or a link to the code(s)) used to find this sequence should be posted here. |
Revision as of 01:28, 10 January 2010
This is a sequence with 1124 terms and discrepancy 2. We haven't found any longer sequences with discrepancy 2, but we have found more than 400 000 000 with this length.
Multiplicativity properties of the 1124 sequence
The 1124 sequence is not weakly multiplicative, but it does appear to be close to a weakly multiplicative sequence. That is, if you are prepared to disregard a few "errors", then the number of distinct HAP-subsequences is 6. One can use this information to identify a quasi-multiplicative sequence that is in some sense close to the 1124 sequence. Some details can be found in the sequences of comments that begin here and here.
Method
Here should be a short description of the way the sequence was found. (The code(s) used should be further down this page.)
Status
Is the data still relevant (e.g. longest known)? Is the method still relevant, or have we found a better method? Is the program still running on a computer somewhere?
The sequence is a longest known sequence with discrepancy 2.
The data
The raw sequence
+ - + + - - - - + + - + + + - - + - + + - - - + - + + - + - - + + - + - - + - - + + - + + - - - + + + - - + - + - - + + + + - - + - - + + - - + + + - - + + - + - - + - - + + - + - - + - + + + - - + - + - - + + - - - + + - + + + - - - + - - + - + + + + - - - - + + - + + + - - + - - + - - + - + - + + - + + + - - - - + + + + - - - + + - + - - + - + + - - + - + + - + - + - + + - - - + + - + + - - + - - + - - + + + + - + - - + - - + + - - + - + + - - - + - + + - + + + - - + + - - + - - + - + + - - + - + + - + + - - + - - + - + + - - + + - + - + - - + - + + + - - + - + + - - - - + + - - + - + + - + + - - + - + + - - + + - + - - + - + - - + + - - + - + + + - + - - + - + - - + + + + - - - + + - + - - + - + + - - + - + + - + + - - + - - + - + + - - + + - - - + + - - + - + + - + + - - + - - + + + + - - - - + + - + + - + + - - + - - + + - - - + + - + + - - + - + + - + - - - + - + + - + + - - + - - + - + + - - + + - + + + - - - + - + + - + + - - + - - - + + + - - + - + - - + + + - + - + + - + - - - + + - + - + + - - + - - + - + + - - + - + - + + - + - + - - + - + + - - + - - + - + + + - - - + + - + + + - + - - + - + + - - + - + + - + - - - + - + + - + + - - + - - - + + + - - + - + + - - + + - + - + + - + - - - + - - + - + + - - + - + + - + + - - + - + + - + + - - + - - + - + + - - + - - + - + + - + - - + + - + + - - + - - + - + + - - + - + + - + + - - + - + + - - + + - + - - + - + + - - + - - + - + + - - + - + + - + + - + + - - + - + + - - + - - + - + + - - + - + - - + + + - + - - + - + + - - + - + - - + + + - - - + + - + + - - + + - + - + + - - + - - + - - + - + + - + - - + + + - + - - + - + + - - + - + - - + + - - + - + + - + + - - + + - + - - + - - + - + + - + + - - + - + + - + + - - + - - + + + - - - + - - + - + + - - + + + + - + - - + + - - + - + + - - + - - + - + + - - + - + + - + + - - + - - + - + + - - - + + - - + + - - + - + + - + + - - + - - + - + + + - + - - + - + + - - + - + + - + - + - - + - + - + + - - + - + - - + + + - + - - - + + + - - + - - + - + + - - + + + + - + - - - + - + + - + + - - + - - + + + - - - + - - + - + + + - + - + + - + - - - + - - + + + + - - + - + + - - + - + + - + - - + - + + - - - + - - + + - + - + + - + - - - + - + + + + - + - - - - + - + + - + + - - + + - + + - + - - + - + + - + - -
The sequence, together with the corresponding integers
1+ 2- 3+ 4+ 5- 6- 7- 8- 9+ 10+ 11- 12+ 13+ 14+ 15- 16- 17+ 18- 19+ 20+ 21- 22- 23- 24+ 25- 26+ 27+ 28- 29+ 30- 31- 32+ 33+ 34- 35+ 36- 37- 38+ 39- 40- 41+ 42+ 43- 44+ 45+ 46- 47- 48- 49+ 50+ 51+ 52- 53- 54+ 55- 56+ 57- 58- 59+ 60+ 61+ 62+ 63- 64- 65+ 66- 67- 68+ 69+ 70- 71- 72+ 73+ 74+ 75- 76- 77+ 78+ 79- 80+ 81- 82- 83+ 84- 85- 86+ 87+ 88- 89+ 90- 91- 92+ 93- 94+ 95+ 96+ 97- 98- 99+ 100- 101+ 102- 103- 104+ 105+ 106- 107- 108- 109+ 110+ 111- 112+ 113+ 114+ 115- 116- 117- 118+ 119- 120- 121+ 122- 123+ 124+ 125+ 126+ 127- 128- 129- 130- 131+ 132+ 133- 134+ 135+ 136+ 137- 138- 139+ 140- 141- 142+ 143- 144- 145+ 146- 147+ 148- 149+ 150+ 151- 152+ 153+ 154+ 155- 156- 157- 158- 159+ 160+ 161+ 162+ 163- 164- 165- 166+ 167+ 168- 169+ 170- 171- 172+ 173- 174+ 175+ 176- 177- 178+ 179- 180+ 181+ 182- 183+ 184- 185+ 186- 187+ 188+ 189- 190- 191- 192+ 193+ 194- 195+ 196+ 197- 198- 199+ 200- 201- 202+ 203- 204- 205+ 206+ 207+ 208+ 209- 210+ 211- 212- 213+ 214- 215- 216+ 217+ 218- 219- 220+ 221- 222+ 223+ 224- 225- 226- 227+ 228- 229+ 230+ 231- 232+ 233+ 234+ 235- 236- 237+ 238+ 239- 240- 241+ 242- 243- 244+ 245- 246+ 247+ 248- 249- 250+ 251- 252+ 253+ 254- 255+ 256+ 257- 258- 259+ 260- 261- 262+ 263- 264+ 265+ 266- 267- 268+ 269+ 270- 271+ 272- 273+ 274- 275- 276+ 277- 278+ 279+ 280+ 281- 282- 283+ 284- 285+ 286+ 287- 288- 289- 290- 291+ 292+ 293- 294- 295+ 296- 297+ 298+ 299- 300+ 301+ 302- 303- 304+ 305- 306+ 307+ 308- 309- 310+ 311+ 312- 313+ 314- 315- 316+ 317- 318+ 319- 320- 321+ 322+ 323- 324- 325+ 326- 327+ 328+ 329+ 330- 331+ 332- 333- 334+ 335- 336+ 337- 338- 339+ 340+ 341+ 342+ 343- 344- 345- 346+ 347+ 348- 349+ 350- 351- 352+ 353- 354+ 355+ 356- 357- 358+ 359- 360+ 361+ 362- 363+ 364+ 365- 366- 367+ 368- 369- 370+ 371- 372+ 373+ 374- 375- 376+ 377+ 378- 379- 380- 381+ 382+ 383- 384- 385+ 386- 387+ 388+ 389- 390+ 391+ 392- 393- 394+ 395- 396- 397+ 398+ 399+ 400+ 401- 402- 403- 404- 405+ 406+ 407- 408+ 409+ 410- 411+ 412+ 413- 414- 415+ 416- 417- 418+ 419+ 420- 421- 422- 423+ 424+ 425- 426+ 427+ 428- 429- 430+ 431- 432+ 433+ 434- 435+ 436- 437- 438- 439+ 440- 441+ 442+ 443- 444+ 445+ 446- 447- 448+ 449- 450- 451+ 452- 453+ 454+ 455- 456- 457+ 458+ 459- 460+ 461+ 462+ 463- 464- 465- 466+ 467- 468+ 469+ 470- 471+ 472+ 473- 474- 475+ 476- 477- 478- 479+ 480+ 481+ 482- 483- 484+ 485- 486+ 487- 488- 489+ 490+ 491+ 492- 493+ 494- 495+ 496+ 497- 498+ 499- 500- 501- 502+ 503+ 504- 505+ 506- 507+ 508+ 509- 510- 511+ 512- 513- 514+ 515- 516+ 517+ 518- 519- 520+ 521- 522+ 523- 524+ 525+ 526- 527+ 528- 529+ 530- 531- 532+ 533- 534+ 535+ 536- 537- 538+ 539- 540- 541+ 542- 543+ 544+ 545+ 546- 547- 548- 549+ 550+ 551- 552+ 553+ 554+ 555- 556+ 557- 558- 559+ 560- 561+ 562+ 563- 564- 565+ 566- 567+ 568+ 569- 570+ 571- 572- 573- 574+ 575- 576+ 577+ 578- 579+ 580+ 581- 582- 583+ 584- 585- 586- 587+ 588+ 589+ 590- 591- 592+ 593- 594+ 595+ 596- 597- 598+ 599+ 600- 601+ 602- 603+ 604+ 605- 606+ 607- 608- 609- 610+ 611- 612- 613+ 614- 615+ 616+ 617- 618- 619+ 620- 621+ 622+ 623- 624+ 625+ 626- 627- 628+ 629- 630+ 631+ 632- 633+ 634+ 635- 636- 637+ 638- 639- 640+ 641- 642+ 643+ 644- 645- 646+ 647- 648- 649+ 650- 651+ 652+ 653- 654+ 655- 656- 657+ 658+ 659- 660+ 661+ 662- 663- 664+ 665- 666- 667+ 668- 669+ 670+ 671- 672- 673+ 674- 675+ 676+ 677- 678+ 679+ 680- 681- 682+ 683- 684+ 685+ 686- 687- 688+ 689+ 690- 691+ 692- 693- 694+ 695- 696+ 697+ 698- 699- 700+ 701- 702- 703+ 704- 705+ 706+ 707- 708- 709+ 710- 711+ 712+ 713- 714+ 715+ 716- 717+ 718+ 719- 720- 721+ 722- 723+ 724+ 725- 726- 727+ 728- 729- 730+ 731- 732+ 733+ 734- 735- 736+ 737- 738+ 739- 740- 741+ 742+ 743+ 744- 745+ 746- 747- 748+ 749- 750+ 751+ 752- 753- 754+ 755- 756+ 757- 758- 759+ 760+ 761+ 762- 763- 764- 765+ 766+ 767- 768+ 769+ 770- 771- 772+ 773+ 774- 775+ 776- 777+ 778+ 779- 780- 781+ 782- 783- 784+ 785- 786- 787+ 788- 789+ 790+ 791- 792+ 793- 794- 795+ 796+ 797+ 798- 799+ 800- 801- 802+ 803- 804+ 805+ 806- 807- 808+ 809- 810+ 811- 812- 813+ 814+ 815- 816- 817+ 818- 819+ 820+ 821- 822+ 823+ 824- 825- 826+ 827+ 828- 829+ 830- 831- 832+ 833- 834- 835+ 836- 837+ 838+ 839- 840+ 841+ 842- 843- 844+ 845- 846+ 847+ 848- 849+ 850+ 851- 852- 853+ 854- 855- 856+ 857+ 858+ 859- 860- 861- 862+ 863- 864- 865+ 866- 867+ 868+ 869- 870- 871+ 872+ 873+ 874+ 875- 876+ 877- 878- 879+ 880+ 881- 882- 883+ 884- 885+ 886+ 887- 888- 889+ 890- 891- 892+ 893- 894+ 895+ 896- 897- 898+ 899- 900+ 901+ 902- 903+ 904+ 905- 906- 907+ 908- 909- 910+ 911- 912+ 913+ 914- 915- 916- 917+ 918+ 919- 920- 921+ 922+ 923- 924- 925+ 926- 927+ 928+ 929- 930+ 931+ 932- 933- 934+ 935- 936- 937+ 938- 939+ 940+ 941+ 942- 943+ 944- 945- 946+ 947- 948+ 949+ 950- 951- 952+ 953- 954+ 955+ 956- 957+ 958- 959+ 960- 961- 962+ 963- 964+ 965- 966+ 967+ 968- 969- 970+ 971- 972+ 973- 974- 975+ 976+ 977+ 978- 979+ 980- 981- 982- 983+ 984+ 985+ 986- 987- 988+ 989- 990- 991+ 992- 993+ 994+ 995- 996- 997+ 998+ 999+ 1000+ 1001- 1002+ 1003- 1004- 1005- 1006+ 1007- 1008+ 1009+ 1010- 1011+ 1012+ 1013- 1014- 1015+ 1016- 1017- 1018+ 1019+ 1020+ 1021- 1022- 1023- 1024+ 1025- 1026- 1027+ 1028- 1029+ 1030+ 1031+ 1032- 1033+ 1034- 1035+ 1036+ 1037- 1038+ 1039- 1040- 1041- 1042+ 1043- 1044- 1045+ 1046+ 1047+ 1048+ 1049- 1050- 1051+ 1052- 1053+ 1054+ 1055- 1056- 1057+ 1058- 1059+ 1060+ 1061- 1062+ 1063- 1064- 1065+ 1066- 1067+ 1068+ 1069- 1070- 1071- 1072+ 1073- 1074- 1075+ 1076+ 1077- 1078+ 1079- 1080+ 1081+ 1082- 1083+ 1084- 1085- 1086- 1087+ 1088- 1089+ 1090+ 1091+ 1092+ 1093- 1094+ 1095- 1096- 1097- 1098- 1099+ 1100- 1101+ 1102+ 1103- 1104+ 1105+ 1106- 1107- 1108+ 1109+ 1110- 1111+ 1112+ 1113- 1114+ 1115- 1116- 1117+ 1118- 1119+ 1120+ 1121- 1122+ 1123- 1124-
Links to other displays and visually displayed information about the sequence
Here is an alternate formatting. Link.
The sequence in groups of 24 and in colour (Google Docs format). Multiples of 2 only.
The sequence in groups of 24, also multiples of 8 only (HTML format).
Here is a Rauzy tree that conveys information about subsequences of the sequence: Link.
Relevant code
The code(s) (or a link to the code(s)) used to find this sequence should be posted here.