BK:Section 3: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
Olof (talk | contribs)
Very rough initial sketch
 
Olof (talk | contribs)
m Typo correction
Line 5: Line 5:
:'''Proposition 1''' Let <math>A</math> be a subset of <math>\mathbb{F}_3^n</math> with density <math>\alpha</math>, and let <math>\delta > 0</math> and <math>0 \leq \eta \leq 1</math> be parameters. Set <math>\Delta = \{ \gamma \in \widehat{G} : | \widehat{1_A}(\gamma) | \geq \delta \alpha \} \setminus \{0\}</math>. Then
:'''Proposition 1''' Let <math>A</math> be a subset of <math>\mathbb{F}_3^n</math> with density <math>\alpha</math>, and let <math>\delta > 0</math> and <math>0 \leq \eta \leq 1</math> be parameters. Set <math>\Delta = \{ \gamma \in \widehat{G} : | \widehat{1_A}(\gamma) | \geq \delta \alpha \} \setminus \{0\}</math>. Then
# either there is a subspace of <math>\mathbb{F}_3^n</math> of codimension <math>d</math> on which <math>A</math> has density at least <math>\alpha(1 + \eta)</math>
# either there is a subspace of <math>\mathbb{F}_3^n</math> of codimension <math>d</math> on which <math>A</math> has density at least <math>\alpha(1 + \eta)</math>
# or <math>|\Delta \cap W| \leq \eta \alpha^{-1}</math> for each <math>d</math>-dimensional subspace <math>W \leq \widehat{\mathbb{F}_3^n}</math>.
# or <math>|\Delta \cap W| \leq \eta \delta^{-2}</math> for each <math>d</math>-dimensional subspace <math>W \leq \widehat{\mathbb{F}_3^n}</math>.





Revision as of 18:19, 5 February 2011

One of the take-away results from Section 3 of the Bateman-Katz paper is Proposition 3.1, which is in some places referred to as the "nd-estimate". The rough reason for this terminology is that it says that a set [math]\displaystyle{ A }[/math] in [math]\displaystyle{ \mathbb{F}_3^n }[/math] of density about [math]\displaystyle{ 1/n }[/math] either has a `good' density increment on a subspace of codimension [math]\displaystyle{ d }[/math], or else the [math]\displaystyle{ (1/n) }[/math]-large spectrum of [math]\displaystyle{ A }[/math] intersects any [math]\displaystyle{ d }[/math]-dimensional subspace in at most about [math]\displaystyle{ nd }[/math] points.

Here is the precise result, stated in slightly different terms to the paper in order to illustrate how it relates to other results.

Proposition 1 Let [math]\displaystyle{ A }[/math] be a subset of [math]\displaystyle{ \mathbb{F}_3^n }[/math] with density [math]\displaystyle{ \alpha }[/math], and let [math]\displaystyle{ \delta \gt 0 }[/math] and [math]\displaystyle{ 0 \leq \eta \leq 1 }[/math] be parameters. Set [math]\displaystyle{ \Delta = \{ \gamma \in \widehat{G} : | \widehat{1_A}(\gamma) | \geq \delta \alpha \} \setminus \{0\} }[/math]. Then
  1. either there is a subspace of [math]\displaystyle{ \mathbb{F}_3^n }[/math] of codimension [math]\displaystyle{ d }[/math] on which [math]\displaystyle{ A }[/math] has density at least [math]\displaystyle{ \alpha(1 + \eta) }[/math]
  2. or [math]\displaystyle{ |\Delta \cap W| \leq \eta \delta^{-2} }[/math] for each [math]\displaystyle{ d }[/math]-dimensional subspace [math]\displaystyle{ W \leq \widehat{\mathbb{F}_3^n} }[/math].


To be added:

  • Proof
  • Statement of size bound on [math]\displaystyle{ \Delta }[/math] from Parseval alone
  • Statement of Chang's theorem
  • Relation to Lemma 2.8 in Sanders's paper