ABC conjecture: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
Mabcp (talk | contribs)
Mabcp (talk | contribs)
Line 26: Line 26:


*[http://mathoverflow.net/questions/106321/mochizukis-proof-and-siegel-zeros Mochizuki’s proof and Siegel zeros], Mathoverflow, 4 Sept 2012
*[http://mathoverflow.net/questions/106321/mochizukis-proof-and-siegel-zeros Mochizuki’s proof and Siegel zeros], Mathoverflow, 4 Sept 2012
*[http://mathoverflow.net/questions/106560/what-is-the-underlying-vision-that-mochizuki-pursued-when-trying-to-prove-the-abc What is the underlying vision that Mochizuki pursued when trying to prove the ABC conjecture?], Mathoverflow, 7 Sept 2012
*[http://mathoverflow.net/questions/106560/philosophy-behind-mochizukis-work-on-the-abc-conjecture Philosophy behind Mochizuki’s work on the ABC conjecture], Mathoverflow, 7 Sept 2012
*[http://golem.ph.utexas.edu/category/2012/09/the_axgrothendieck_theorem_acc.html The Ax-Grothendieck Theorem According to Category Theory], The n-Category Café, September 10, 2012
*[http://www.nature.com/news/proof-claimed-for-deep-connection-between-primes-1.11378 Proof claimed for deep connection between primes], Nature News, 10 September 2012

Revision as of 09:30, 10 September 2012

The abc conjecture asserts, roughly speaking, that if a+b=c and a,b,c are coprime, then a,b,c cannot all be too smooth; in particular, the product of all the primes dividing a, b, or c has to exceed [math]\displaystyle{ c^{1-\varepsilon} }[/math] for any fixed [math]\displaystyle{ \varepsilon \gt 0 }[/math] (if a,b,c are smooth).

This shows for instance that [math]\displaystyle{ (1-\varepsilon) \log N / 3 }[/math]-smooth a,b,c of size N which are coprime cannot sum to form a+b=c. This unfortunately seems to be too weak to be of much use for the finding primes project.

Mochizuki's proof

The paper: INTER-UNIVERSAL TEICHMULLER THEORY IV: LOG-VOLUME COMPUTATIONS AND SET-THEORETIC FOUNDATIONS, Shinichi Mochizuki, 30 August 2012

The previous papers:Shinichi Mochizuki's papers

Online response