Distribution of primes in smooth moduli: Difference between revisions
New page: A key input to Zhang's proof that bounded gaps occur infinitely often is a distribution result on primes in smooth moduli, which we have called <math>MPZ[\varpi,\delta]</math> (and later s... |
|||
Line 1: | Line 1: | ||
A key input to Zhang's proof that bounded gaps occur infinitely often is a distribution result on primes in smooth moduli, which we have called <math>MPZ[\varpi,\delta]</math> (and later strengthened to <math>MPZ'[\varpi,\delta]</math>. These estimates are obtained as a combination of three other estimates, which we will call <math>Type_I[\varpi,\delta,\sigma]</math>, <math>Type_{II}[\varpi,\delta,\sigma]</math>, and <math>Type_{III}[\varpi,\delta,\sigma]</math>. | A key input to Zhang's proof that bounded gaps occur infinitely often is a distribution result on primes in smooth moduli, which we have called <math>MPZ[\varpi,\delta]</math> (and later strengthened to <math>MPZ'[\varpi,\delta]</math>. These estimates are obtained as a combination of three other estimates, which we will call <math>Type_I[\varpi,\delta,\sigma]</math>, <math>Type_{II}[\varpi,\delta,\sigma]</math>, and <math>Type_{III}[\varpi,\delta,\sigma]</math>. | ||
== | == Definitions == | ||
=== Asymptotic notation === | |||
<math>x</math> is a parameter going off to infinity, and all quantities may depend on <math>x</math> unless explicitly declared to be "fixed". The asymptotic notation <math>O(), o(), \ll</math> is then defined relative to this parameter. A quantity <math>q</math> is said to be <em>of polynomial size</em> if one has <math>q = O(x^{O(1)})</math>, and <em>bounded</em> if <math>q=O(1)</math>. We also write <math>X \lessapprox Y</math> for <math>X \ll x^{o(1)} Y</math>, and <math>X \sim Y</math> for <math>X \ll Y \ll X</math>. | |||
=== Coefficient sequences === | === Coefficient sequences === | ||
We need a fixed quantity <math>A_0>0</math>. | |||
A <B>coefficient sequence</B> is a finitely supported sequence <math>\alpha: {\mathbf N} \rightarrow {\mathbf R}</math> that obeys the bounds | |||
:<math>\displaystyle |\alpha(n)| \ll \tau^{O(1)}(n) \log^{O(1)}(x)</math> | |||
* If <math>\alpha</math> is a coefficient sequence and <math>a\ (q) = a \hbox{ mod } q</math> is a primitive residue class, the (signed) <em>discrepancy</em> <math>\Delta(\alpha; a\ (q))</math> of <math>\alpha</math> in the sequence is defined to be the quantity | |||
: <math>\displaystyle \Delta(\alpha; a \ (q)) := \sum_{n: n = a\ (q)} \alpha(n) - \frac{1}{\phi(q)} \sum_{n: (n,q)=1} \alpha(n).</math> | |||
* A coefficient sequence <math>\alpha</math> is said to be <em>at scale <math>N</math></em> for some <math>N \geq 1</math> if it is supported on an interval of the form <math>[(1-O(\log^{-A_0} x)) N, (1+O(\log^{-A_0} x)) N]</math>. | |||
* A coefficient sequence <math>\alpha</math>at scale <math>N</math> is said to <em>obey the Siegel-Walfisz theorem</em> if one has | |||
: <math> \displaystyle | \Delta(\alpha 1_{(\cdot,q)=1}; a\ (r)) | \ll \tau(qr)^{O(1)} N \log^{-A} x</math> | |||
for any <math>q,r \geq 1</math>, any fixed <math>A</math>, and any primitive residue class <math>a\ (r)</math>. | |||
* A coefficient sequence <math>\alpha</math> at scale <math>N</math> is said to be <em>smooth</em> if it takes the form <math>\alpha(n) = \psi(n/N)</math> for some smooth function <math>\psi: {\mathbf R} \rightarrow {\mathbf C}</math> supported on <math>[1-O(\log^{-A_0} x), 1+O(\log^{-A_0} x)]</math> obeying the derivative bounds | |||
:<math>\displaystyle \psi^{(j)}(t) = O( \log^{j A_0} x ) </math> | |||
for all fixed <math>j \geq 0</math> (note that the implied constant in the <math>O()</math> notation may depend on <math>j</math>). | |||
=== Congruence class systems === | === Congruence class systems === | ||
Let <math>I \subset {\mathbf R}</math>, and let </math>{\mathcal S}_I</math> denote the square-free numbers whose prime factors lie in <math>I</math>. | |||
* A <em>singleton congruence class system</em> on <math>I</math> is a collection <math>{\mathcal C} = (\{a_q\})_{q \in {\mathcal S}_I}</math> of primitive residue classes <math>a_q \in ({\mathbf Z}/q{\mathbf Z})^\times</math> for each </math>q \in {\mathcal S}_I</math>, obeying the Chinese remainder theorem property | |||
:<math>\displaystyle a_{qr}\ (qr) = (a_q\ (q)) \cap (a_r\ (r))</math> | |||
whenever <math>q,r \in {\mathcal S}_I</math> are coprime. We say that such a system <math>{\mathcal C}</math> has <em>controlled multiplicity</em> if the quantity | |||
:<math>\displaystyle \tau_{\mathcal C}(n) := |\{ q \in {\mathcal S}_I: n = a_q\ (q) \}|</math> | |||
obeys the estimate | |||
:<math>\displaystyle \sum_{C^{-1} x \leq n \leq Cx: n = a\ (r)} \tau_{\mathcal C}(n)^2 \ll \frac{x}{r} \tau(r)^{O(1)} \log^{O(1)} x + x^{o(1)}. </math> | |||
for any fixed <math>C > 1</math> and any congruence class <math>a\ (r)</math> with <math>r \in {\mathcal S}_I</math>. Here <math>\tau</math> is the divisor function. | |||
=== Smooth and densely divisible numbers === | === Smooth and densely divisible numbers === | ||
A natural number <math>n</math> is said to be <em><math>y</math>-smooth</em> if all of its prime factors are less than or equal to <math>y</math>. We say that <math>n</math> is <em><math>y</math>-densely divisible</math> if, for every <math>1 \leq R \leq n</math>, one can find a factor of <math>n</math> in the interval <math>[y^{-1} R, R]</math>. | |||
=== MPZ === | === MPZ === |
Revision as of 19:35, 25 June 2013
A key input to Zhang's proof that bounded gaps occur infinitely often is a distribution result on primes in smooth moduli, which we have called [math]\displaystyle{ MPZ[\varpi,\delta] }[/math] (and later strengthened to [math]\displaystyle{ MPZ'[\varpi,\delta] }[/math]. These estimates are obtained as a combination of three other estimates, which we will call [math]\displaystyle{ Type_I[\varpi,\delta,\sigma] }[/math], [math]\displaystyle{ Type_{II}[\varpi,\delta,\sigma] }[/math], and [math]\displaystyle{ Type_{III}[\varpi,\delta,\sigma] }[/math].
Definitions
Asymptotic notation
[math]\displaystyle{ x }[/math] is a parameter going off to infinity, and all quantities may depend on [math]\displaystyle{ x }[/math] unless explicitly declared to be "fixed". The asymptotic notation [math]\displaystyle{ O(), o(), \ll }[/math] is then defined relative to this parameter. A quantity [math]\displaystyle{ q }[/math] is said to be of polynomial size if one has [math]\displaystyle{ q = O(x^{O(1)}) }[/math], and bounded if [math]\displaystyle{ q=O(1) }[/math]. We also write [math]\displaystyle{ X \lessapprox Y }[/math] for [math]\displaystyle{ X \ll x^{o(1)} Y }[/math], and [math]\displaystyle{ X \sim Y }[/math] for [math]\displaystyle{ X \ll Y \ll X }[/math].
Coefficient sequences
We need a fixed quantity [math]\displaystyle{ A_0\gt 0 }[/math].
A coefficient sequence is a finitely supported sequence [math]\displaystyle{ \alpha: {\mathbf N} \rightarrow {\mathbf R} }[/math] that obeys the bounds
- [math]\displaystyle{ \displaystyle |\alpha(n)| \ll \tau^{O(1)}(n) \log^{O(1)}(x) }[/math]
- If [math]\displaystyle{ \alpha }[/math] is a coefficient sequence and [math]\displaystyle{ a\ (q) = a \hbox{ mod } q }[/math] is a primitive residue class, the (signed) discrepancy [math]\displaystyle{ \Delta(\alpha; a\ (q)) }[/math] of [math]\displaystyle{ \alpha }[/math] in the sequence is defined to be the quantity
- [math]\displaystyle{ \displaystyle \Delta(\alpha; a \ (q)) := \sum_{n: n = a\ (q)} \alpha(n) - \frac{1}{\phi(q)} \sum_{n: (n,q)=1} \alpha(n). }[/math]
- A coefficient sequence [math]\displaystyle{ \alpha }[/math] is said to be at scale [math]\displaystyle{ N }[/math] for some [math]\displaystyle{ N \geq 1 }[/math] if it is supported on an interval of the form [math]\displaystyle{ [(1-O(\log^{-A_0} x)) N, (1+O(\log^{-A_0} x)) N] }[/math].
- A coefficient sequence [math]\displaystyle{ \alpha }[/math]at scale [math]\displaystyle{ N }[/math] is said to obey the Siegel-Walfisz theorem if one has
- [math]\displaystyle{ \displaystyle | \Delta(\alpha 1_{(\cdot,q)=1}; a\ (r)) | \ll \tau(qr)^{O(1)} N \log^{-A} x }[/math]
for any [math]\displaystyle{ q,r \geq 1 }[/math], any fixed [math]\displaystyle{ A }[/math], and any primitive residue class [math]\displaystyle{ a\ (r) }[/math].
- A coefficient sequence [math]\displaystyle{ \alpha }[/math] at scale [math]\displaystyle{ N }[/math] is said to be smooth if it takes the form [math]\displaystyle{ \alpha(n) = \psi(n/N) }[/math] for some smooth function [math]\displaystyle{ \psi: {\mathbf R} \rightarrow {\mathbf C} }[/math] supported on [math]\displaystyle{ [1-O(\log^{-A_0} x), 1+O(\log^{-A_0} x)] }[/math] obeying the derivative bounds
- [math]\displaystyle{ \displaystyle \psi^{(j)}(t) = O( \log^{j A_0} x ) }[/math]
for all fixed [math]\displaystyle{ j \geq 0 }[/math] (note that the implied constant in the [math]\displaystyle{ O() }[/math] notation may depend on [math]\displaystyle{ j }[/math]).
Congruence class systems
Let [math]\displaystyle{ I \subset {\mathbf R} }[/math], and let </math>{\mathcal S}_I</math> denote the square-free numbers whose prime factors lie in [math]\displaystyle{ I }[/math].
- A singleton congruence class system on [math]\displaystyle{ I }[/math] is a collection [math]\displaystyle{ {\mathcal C} = (\{a_q\})_{q \in {\mathcal S}_I} }[/math] of primitive residue classes [math]\displaystyle{ a_q \in ({\mathbf Z}/q{\mathbf Z})^\times }[/math] for each </math>q \in {\mathcal S}_I</math>, obeying the Chinese remainder theorem property
- [math]\displaystyle{ \displaystyle a_{qr}\ (qr) = (a_q\ (q)) \cap (a_r\ (r)) }[/math]
whenever [math]\displaystyle{ q,r \in {\mathcal S}_I }[/math] are coprime. We say that such a system [math]\displaystyle{ {\mathcal C} }[/math] has controlled multiplicity if the quantity
- [math]\displaystyle{ \displaystyle \tau_{\mathcal C}(n) := |\{ q \in {\mathcal S}_I: n = a_q\ (q) \}| }[/math]
obeys the estimate
- [math]\displaystyle{ \displaystyle \sum_{C^{-1} x \leq n \leq Cx: n = a\ (r)} \tau_{\mathcal C}(n)^2 \ll \frac{x}{r} \tau(r)^{O(1)} \log^{O(1)} x + x^{o(1)}. }[/math]
for any fixed [math]\displaystyle{ C \gt 1 }[/math] and any congruence class [math]\displaystyle{ a\ (r) }[/math] with [math]\displaystyle{ r \in {\mathcal S}_I }[/math]. Here [math]\displaystyle{ \tau }[/math] is the divisor function.
Smooth and densely divisible numbers
A natural number [math]\displaystyle{ n }[/math] is said to be [math]\displaystyle{ y }[/math]-smooth if all of its prime factors are less than or equal to [math]\displaystyle{ y }[/math]. We say that [math]\displaystyle{ n }[/math] is [math]\displaystyle{ y }[/math]-densely divisible</math> if, for every [math]\displaystyle{ 1 \leq R \leq n }[/math], one can find a factor of [math]\displaystyle{ n }[/math] in the interval [math]\displaystyle{ [y^{-1} R, R] }[/math].