Notes on polytope decomposition: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 10: Line 10:
(Throughout these notes, <math>x,y,z</math> are understood to be non-negative.
(Throughout these notes, <math>x,y,z</math> are understood to be non-negative.


We partition R into 60 pieces, which are permutations of the following 10:
We partition R six identical pieces, one of which is
 
:<math>R_{xyz} := \{ (x,y,z) \in R: x+y \leq y+z \leq z+x \}.</math>
 
We then partition <math>R_{xyz}</math> further into 10 pieces:


{| border=1
{| border=1
Line 16: Line 20:
!Name!!Inequalities!!<math>x,y</math> inequalities !!<math>z</math> inequalities
!Name!!Inequalities!!<math>x,y</math> inequalities !!<math>z</math> inequalities
|-
|-
| Common
| <math>R_{xyz}</math>
| <math>x,y,z \geq 0; x+y+z \leq 3/2</math>
| <math>x,y,z \geq 0; x+y+z \leq 3/2; x+y \leq y+z \leq z+x</math>
| <math>x \geq y \geq 0; x+y \leq 3/2</math>
| <math>x \geq y \geq 0; 2x+y \leq 3/2</math>
|
| <math>x \leq z \leq 3/2-x-y</math>
|-
|-
| <math>A_{xyz}</math>
| <math>A_{xyz}</math>
| <math>x+y \leq y+z \leq z+x \leq 1-\varepsilon</math>
| <math>z+x \leq 1-\varepsilon</math>
| <math>2x \leq 1-\varepsilon</math>
| <math>2x \leq 1-\varepsilon</math>
| <math>x \leq z \leq \min(1-\varepsilon-x, 3/2-x-y)</math>
| <math>z \leq 1-\varepsilon-x</math>
|-
|-
| <math>B_{xyz}</math>
| <math>B_{xyz}</math>
| <math>x+y \leq y+z \leq 1-\varepsilon \leq z+x \leq 1+\varepsilon </math>
| <math>y+z \leq 1-\varepsilon \leq z+x \leq 1+\varepsilon </math>
| <math>2x \leq 1+\varepsilon; x+y \leq 1-\varepsilon; y \leq 1/2+\varepsilon</math>
| <math>2x \leq 1+\varepsilon; x+y \leq 1-\varepsilon; y \leq 1/2+\varepsilon</math>
| <math>\max(x,1-\varepsilon-x) \leq z \leq \min(1+\varepsilon-x, 1-\varepsilon-y, 3/2-x-y)</math>
| <math>1-\varepsilon-x \leq z \leq \min(1+\varepsilon-x, 1-\varepsilon-y)</math>
|-
|-
| <math>C_{xyz}</math>
| <math>C_{xyz}</math>
| <math>x+y \leq 1-\varepsilon \leq y+z \leq z+x \leq 1+\varepsilon </math>
| <math>x+y \leq 1-\varepsilon \leq y+z; z+x \leq 1+\varepsilon </math>
| <math>x+y \leq 1-\varepsilon; x \leq 1/2+\varepsilon</math>
| <math>x+y \leq 1-\varepsilon; x \leq 1/2+\varepsilon</math>
| <math>1-\varepsilon-y \leq z \leq \min(1+\varepsilon-x, 3/2-x-y)</math>
| <math>1-\varepsilon-y \leq z \leq \min(1+\varepsilon-x</math>
|-
|-
| <math>D_{xyz}</math>
| <math>D_{xyz}</math>
| <math>1-\varepsilon \leq x+y \leq  y+z  \leq z+x \leq 1+\varepsilon </math>
| <math>1-\varepsilon \leq x+y; z+x \leq 1+\varepsilon </math>
| <math>x+y \geq 1-\varepsilon; 2x \leq 1+\varepsilon; 2x+y \leq 3/2</math>
| <math>x+y \geq 1-\varepsilon; 2x \leq 1+\varepsilon</math>
| <math>x \leq z \leq \min( 1+\varepsilon-x, 3/2-x-y)</math>
| <math>z \leq 1+\varepsilon-x</math>
|-
|-
| <math>E_{xyz}</math>
| <math>E_{xyz}</math>
| <math>x+y \leq y+z \leq 1-\varepsilon \leq 1+\varepsilon \leq z+x</math>
| <math>y+z \leq 1-\varepsilon; 1+\varepsilon \leq z+x</math>
| <math>x+y \leq 1-\varepsilon; y \leq 1/2-\varepsilon</math>
| <math>x+y \leq 1-\varepsilon; y \leq 1/2-\varepsilon</math>
| <math>\max(x,1+\varepsilon-x) \leq z \leq \min(1-\varepsilon-y, 3/2-x-y)</math>
| <math>1+\varepsilon-x \leq z \leq 1-\varepsilon-y</math>
|-
|-
| <math>S_{xyz}</math>
| <math>S_{xyz}</math>
| <math>x+y \leq 1-\varepsilon \leq y+z \leq 1+\varepsilon \leq z+x; z \leq 1/2+\varepsilon</math>
| <math>x+y \leq 1-\varepsilon \leq y+z \leq 1+\varepsilon \leq z+x</math>
|
<math>z \leq 1/2+\varepsilon</math>
|
| <math>x+y \leq 1-\varepsilon; x \geq 1/2; y \geq 1/2-2\varepsilon</math>
| <math>\max(1-\varepsilon-y,1+\varepsilon-x) \leq z \leq \min(1/2+\varepsilon,1+\varepsilon-y)
|-
|-
| <math>T_{xyz}</math>
| <math>T_{xyz}</math>
| <math>x+y \leq 1-\varepsilon \leq y+z \leq 1+\varepsilon \leq z+x; z \geq 1/2+\varepsilon; x \geq 1/2-\varepsilon</math>
| <math>x+y \leq 1-\varepsilon \leq y+z \leq 1+\varepsilon \leq z+x</math>
|
<math>z \geq 1/2+\varepsilon; x \geq 1/2-\varepsilon</math>
|
| <math>x+y \leq 1-\varepsilon; x \geq 1/2-\varepsilon</math>
| <math>\max(1-\varepsilon-y,1+\varepsilon-x,1/2-\varepsilon) \leq z \leq 1+\varepsilon-y</math>
|-
|-
| <math>U_{xyz}</math>
| <math>U_{xyz}</math>
| <math>x+y \leq 1-\varepsilon \leq y+z \leq 1+\varepsilon \leq z+x; x \leq 1/2-\varepsilon</math>
| <math>x+y \leq 1-\varepsilon \leq y+z \leq 1+\varepsilon \leq z+x</math>
|
<math> x \leq 1/2-\varepsilon</math>
|
| <math>x \leq 1/2-\varepsilon</math>
| <math>\max(1-\varepsilon-y,1+\varepsilon-x) \leq z \leq 1+\varepsilon-y </math>
|-
|-
| <math>G_{xyz}</math>
| <math>G_{xyz}</math>
| <math>x+y \leq 1-\varepsilon \leq 1+\varepsilon \leq y+z \leq z+x</math>
| <math>x+y \leq 1-\varepsilon; 1+\varepsilon \leq y+z</math>
|
| <math>x+y \leq 1-\varepsilon; x \leq 1/2-\varepsilon</math>
|
| <math>1+\varepsilon-y \leq z</math>
|-
|-
| <math>H_{xyz}</math>
| <math>H_{xyz}</math>
| <math>1-\varepsilon \leq x+y \leq y+z \leq 1+\varepsilon \leq z+x</math>
| <math>1-\varepsilon \leq x+y; y+z \leq 1+\varepsilon \leq z+x</math>
|
| <math>x+y \geq 1-\varepsilon</math>
|
| <math>1+\varepsilon-x \leq z \leq 1+\varepsilon-y</math>
|}
|}

Revision as of 18:32, 9 February 2014

The notes here are derived from these notes of Pace Nielsen.

Let [math]\displaystyle{ 1/4 \leq \varepsilon \leq 1/3 }[/math]. The problem here is to optimise the ratio J/I, where

[math]\displaystyle{ J := 3 \int\int_{x+y \leq 1-\varepsilon} (\int_0^{3/2-x-y} F(x,y,z)\ dz)^2\ dx dy }[/math]
[math]\displaystyle{ I := \int\int\int_{x+y+z \leq 3/2} F(x,y,z)^2\ dx dy dz }[/math]

for symmetric F supported on [math]\displaystyle{ R := \{ (x,y,z): x+y+z \leq 3/2 \} }[/math] subject to the vanishing marginal condition

[math]\displaystyle{ \int_0^{3/2-x-y} F(x,y,z)\ dz = 0 }[/math] when [math]\displaystyle{ x+y \geq 1+\varepsilon }[/math].

(Throughout these notes, [math]\displaystyle{ x,y,z }[/math] are understood to be non-negative.

We partition R six identical pieces, one of which is

[math]\displaystyle{ R_{xyz} := \{ (x,y,z) \in R: x+y \leq y+z \leq z+x \}. }[/math]

We then partition [math]\displaystyle{ R_{xyz} }[/math] further into 10 pieces:

Name Inequalities [math]\displaystyle{ x,y }[/math] inequalities [math]\displaystyle{ z }[/math] inequalities
[math]\displaystyle{ R_{xyz} }[/math] [math]\displaystyle{ x,y,z \geq 0; x+y+z \leq 3/2; x+y \leq y+z \leq z+x }[/math] [math]\displaystyle{ x \geq y \geq 0; 2x+y \leq 3/2 }[/math] [math]\displaystyle{ x \leq z \leq 3/2-x-y }[/math]
[math]\displaystyle{ A_{xyz} }[/math] [math]\displaystyle{ z+x \leq 1-\varepsilon }[/math] [math]\displaystyle{ 2x \leq 1-\varepsilon }[/math] [math]\displaystyle{ z \leq 1-\varepsilon-x }[/math]
[math]\displaystyle{ B_{xyz} }[/math] [math]\displaystyle{ y+z \leq 1-\varepsilon \leq z+x \leq 1+\varepsilon }[/math] [math]\displaystyle{ 2x \leq 1+\varepsilon; x+y \leq 1-\varepsilon; y \leq 1/2+\varepsilon }[/math] [math]\displaystyle{ 1-\varepsilon-x \leq z \leq \min(1+\varepsilon-x, 1-\varepsilon-y) }[/math]
[math]\displaystyle{ C_{xyz} }[/math] [math]\displaystyle{ x+y \leq 1-\varepsilon \leq y+z; z+x \leq 1+\varepsilon }[/math] [math]\displaystyle{ x+y \leq 1-\varepsilon; x \leq 1/2+\varepsilon }[/math] [math]\displaystyle{ 1-\varepsilon-y \leq z \leq \min(1+\varepsilon-x }[/math]
[math]\displaystyle{ D_{xyz} }[/math] [math]\displaystyle{ 1-\varepsilon \leq x+y; z+x \leq 1+\varepsilon }[/math] [math]\displaystyle{ x+y \geq 1-\varepsilon; 2x \leq 1+\varepsilon }[/math] [math]\displaystyle{ z \leq 1+\varepsilon-x }[/math]
[math]\displaystyle{ E_{xyz} }[/math] [math]\displaystyle{ y+z \leq 1-\varepsilon; 1+\varepsilon \leq z+x }[/math] [math]\displaystyle{ x+y \leq 1-\varepsilon; y \leq 1/2-\varepsilon }[/math] [math]\displaystyle{ 1+\varepsilon-x \leq z \leq 1-\varepsilon-y }[/math]
[math]\displaystyle{ S_{xyz} }[/math] [math]\displaystyle{ x+y \leq 1-\varepsilon \leq y+z \leq 1+\varepsilon \leq z+x }[/math]

[math]\displaystyle{ z \leq 1/2+\varepsilon }[/math]

[math]\displaystyle{ x+y \leq 1-\varepsilon; x \geq 1/2; y \geq 1/2-2\varepsilon }[/math] [math]\displaystyle{ \max(1-\varepsilon-y,1+\varepsilon-x) \leq z \leq \min(1/2+\varepsilon,1+\varepsilon-y) |- | \lt math\gt T_{xyz} }[/math] [math]\displaystyle{ x+y \leq 1-\varepsilon \leq y+z \leq 1+\varepsilon \leq z+x }[/math]

[math]\displaystyle{ z \geq 1/2+\varepsilon; x \geq 1/2-\varepsilon }[/math]

[math]\displaystyle{ x+y \leq 1-\varepsilon; x \geq 1/2-\varepsilon }[/math] [math]\displaystyle{ \max(1-\varepsilon-y,1+\varepsilon-x,1/2-\varepsilon) \leq z \leq 1+\varepsilon-y }[/math]
[math]\displaystyle{ U_{xyz} }[/math] [math]\displaystyle{ x+y \leq 1-\varepsilon \leq y+z \leq 1+\varepsilon \leq z+x }[/math]

[math]\displaystyle{ x \leq 1/2-\varepsilon }[/math]

[math]\displaystyle{ x \leq 1/2-\varepsilon }[/math] [math]\displaystyle{ \max(1-\varepsilon-y,1+\varepsilon-x) \leq z \leq 1+\varepsilon-y }[/math]
[math]\displaystyle{ G_{xyz} }[/math] [math]\displaystyle{ x+y \leq 1-\varepsilon; 1+\varepsilon \leq y+z }[/math] [math]\displaystyle{ x+y \leq 1-\varepsilon; x \leq 1/2-\varepsilon }[/math] [math]\displaystyle{ 1+\varepsilon-y \leq z }[/math]
[math]\displaystyle{ H_{xyz} }[/math] [math]\displaystyle{ 1-\varepsilon \leq x+y; y+z \leq 1+\varepsilon \leq z+x }[/math] [math]\displaystyle{ x+y \geq 1-\varepsilon }[/math] [math]\displaystyle{ 1+\varepsilon-x \leq z \leq 1+\varepsilon-y }[/math]