Rota's conjecture: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
Chowt (talk | contribs)
Chowt (talk | contribs)
Line 53: Line 53:
* [C1995] [http://alum.mit.edu/www/tchow/dinitz.pdf On the Dinitz conjecture and related conjectures], Timothy Chow, Disc. Math. 145 (1995), 73-82.
* [C1995] [http://alum.mit.edu/www/tchow/dinitz.pdf On the Dinitz conjecture and related conjectures], Timothy Chow, Disc. Math. 145 (1995), 73-82.
* [C2009] [http://alum.mit.edu/www/tchow/rotathree.pdf Reduction of Rota's basis conjecture to a conjecture on three bases], Timothy Chow, Siam J. Disc. Math. 23 (2009), 369-371.
* [C2009] [http://alum.mit.edu/www/tchow/rotathree.pdf Reduction of Rota's basis conjecture to a conjecture on three bases], Timothy Chow, Siam J. Disc. Math. 23 (2009), 369-371.
* [D1997] [https://doi.org/10.1006/aima.1997.1623 On the number of even and odd Latin squares of order <math>p + 1</math>], Arthur Drisko, Advances in Math. 128 (1997), 20&ndash;35.
* [EE2015] [https://arxiv.org/pdf/1502.03736v1.pdf Furstenberg sets and Furstenberg schemes over finite fields], Jordan Ellenberg, Daniel Erman, Feb 2015.
* [EE2015] [https://arxiv.org/pdf/1502.03736v1.pdf Furstenberg sets and Furstenberg schemes over finite fields], Jordan Ellenberg, Daniel Erman, Feb 2015.
* [GH2006] [https://ir.canterbury.ac.nz/bitstream/handle/10092/11877/geelen_humphries_UCDMS2006-6_report.pdf?sequence=1&isAllowed=y Rota's basis conjecture for paving matroids], J. Geelen, P. Humphries, SIAM J. Discrete Math. 20 (2006), no. 4, 1042–1045.  
* [GH2006] [https://ir.canterbury.ac.nz/bitstream/handle/10092/11877/geelen_humphries_UCDMS2006-6_report.pdf?sequence=1&isAllowed=y Rota's basis conjecture for paving matroids], J. Geelen, P. Humphries, SIAM J. Discrete Math. 20 (2006), no. 4, 1042–1045.  
 
* [G2010] [http://epubs.siam.org/doi/abs/10.1137/090773751 The conjectures of Alon&ndash;Tarsi and Rota in dimension prime minus one], David G. Glynn, SIAM J. Discrete Math. 24 (2010), 394&ndash;399.
* [HKL2010] [https://www.cs.elte.hu/egres/tr/egres-10-10.pdf On disjoint common bases in two matroids], Nicholas J. A. Harvey, Tam´as Kir´aly, and Lap Chi Lau, TR-2010-10. Published by the Egerv´ary Research Group, P´azm´any P. s´et´any 1/C, H–1117, Budapest, Hungary.
* [HKL2010] [https://www.cs.elte.hu/egres/tr/egres-10-10.pdf On disjoint common bases in two matroids], Nicholas J. A. Harvey, Tam&aacute;s Kir&aacute;ly, and Lap Chi Lau, TR-2010-10. Published by the Egerv&aacute;ry Research Group, P&aacute;zm&aacute;ny P. s&eacute;t&aacute;ny 1/C, H–1117, Budapest, Hungary.
* [HR1994] [https://pdfs.semanticscholar.org/bf1e/fef6a744e9316b99b2d68d2691fb69212d59.pdf On the relations of various conjectures on Latin squares and straightening coefficients], Rosa Huang and Gian-Carlo Rota, Discrete Math. 128 (1994), 225&ndash;236.
* [W1994] [https://www.researchgate.net/profile/Marcel_Wild/publication/238858036_On_Rota's_Problem_About_n_Bases_in_a_Rank_n_Matroid/links/0a85e52dd02095864b000000.pdf On Rota's problem about <i>n</i> bases in a rank <i>n</i> matroid], Marcel Wild, Advances in Math. 108 (1994), 336&ndash;345.


== Other links ==
== Other links ==

Revision as of 19:02, 3 April 2017

The objective of this Polymath project is to prove

Rota's Basis Conjecture: if [math]\displaystyle{ B_1,\dots,B_n }[/math] are [math]\displaystyle{ n }[/math] bases of an [math]\displaystyle{ n }[/math]-dimensional vector space [math]\displaystyle{ V }[/math] (not necessarily distinct or disjoint), then there exists an [math]\displaystyle{ n \times n }[/math] grid of vectors [math]\displaystyle{ (v_{ij}) }[/math] such that
1. the [math]\displaystyle{ n }[/math] vectors in row [math]\displaystyle{ i }[/math] are the members of the [math]\displaystyle{ i^{th} }[/math] basis [math]\displaystyle{ B_i }[/math] (in some order), and
2. in each column of the matrix, the [math]\displaystyle{ n }[/math] vectors in that column form a basis of [math]\displaystyle{ V }[/math].

Definitions

The statement of Rota's Basis Conjecture is elementary enough that definitions are not necessary, but we present here some definitions that are used below.

A matroid is a finite set [math]\displaystyle{ E }[/math] together with a non-empty family of subsets of [math]\displaystyle{ E }[/math] (called independent sets) such that

1. if [math]\displaystyle{ J }[/math] and [math]\displaystyle{ I }[/math][math]\displaystyle{ J }[/math] then [math]\displaystyle{ I }[/math], and
2. if [math]\displaystyle{ I, J }[/math] and [math]\displaystyle{ |I| &lt; |J| }[/math] then there exists [math]\displaystyle{ x }[/math][math]\displaystyle{ J }[/math] such that [math]\displaystyle{ I &cup; {x} }[/math].

A maximal independent set of a matroid is called a basis and it is a theorem that bases all have the same cardinality; this cardinality is the rank of the matroid.

A matroid is strongly base-orderable if, for any two bases [math]\displaystyle{ B }[/math]1 and [math]\displaystyle{ B }[/math]2, there exists a bijection [math]\displaystyle{ f : B }[/math]1[math]\displaystyle{ B }[/math]2 such that for every subset [math]\displaystyle{ S &sube; B }[/math]1, both [math]\displaystyle{ B }[/math]1 \ [math]\displaystyle{ S &cup; f(S) }[/math] and [math]\displaystyle{ B }[/math]2 \ [math]\displaystyle{ f(S) &cup; S }[/math] are bases. The definition of a base-orderable matroid is the same except that the condition is required to hold only for singleton sets [math]\displaystyle{ S }[/math] (so in particular, a strongly base-orderable matroid is base-orderable).

A minimal dependent set in a matroid is called a circuit.

A Latin square is an [math]\displaystyle{ n &times; n }[/math] grid of positive integers such that every row and every column is a permutation of the numbers from 1 to [math]\displaystyle{ n }[/math]. The sign (respectively, the row-sign) of a Latin square is the product of the signs of the permutations of the all the rows and all the columns (respectively, of all the rows) and the Latin square is called even or odd (respectively, row-even or row-odd) according to whether its sign is +1 or –1.

Partial results

For a positive integer [math]\displaystyle{ n }[/math], let AT([math]\displaystyle{ n }[/math]) (the Alon–Tarsi constant) denote the number of even [math]\displaystyle{ n &times; n }[/math] Latin squares minus the number of odd [math]\displaystyle{ n &times; n }[/math] Latin squares. Then the Alon–Tarsi Conjecture states that AT([math]\displaystyle{ n }[/math]) ≠ 0 for all even [math]\displaystyle{ n }[/math]. (It is easy to show that AT([math]\displaystyle{ n }[/math]) = 0 for odd [math]\displaystyle{ n }[/math].) We can simultaneously replace "even" with "row-even" and "odd" with "row-odd"; the resulting conjecture has been proved by Huang and Rota to be equivalent to the Alon–Tarsi Conjecture. There is a close relationship between the Alon–Tarsi Conjecture and RBC.

Theorem 1 (Huang and Rota). If AT([math]\displaystyle{ n }[/math]) ≠ 0 in a field [math]\displaystyle{ F }[/math], then RBC holds for [math]\displaystyle{ n }[/math]-dimensional vector spaces over [math]\displaystyle{ F }[/math].

Some of the strongest partial results for RBC are really partial results for the Alon–Tarsi Conjecture. In particular we have the following.

Theorem 2 (Drisko). If [math]\displaystyle{ p }[/math] is an odd prime, then AT([math]\displaystyle{ p+1 }[/math]) ≡ (–1)[math]\displaystyle{ (p+1)/2 }[/math] [math]\displaystyle{ p }[/math]2 modulo [math]\displaystyle{ p }[/math]3.

Theorem 3 (Glynn). If [math]\displaystyle{ p }[/math] is an odd prime, then AT([math]\displaystyle{ p-1 }[/math]) ≡ (–1)[math]\displaystyle{ (p-1)/2 }[/math] modulo [math]\displaystyle{ p }[/math].

It follows that RBC is true over a field of characteristic zero in even dimensions [math]\displaystyle{ n &le; 24 }[/math].

RBC has also been proved for certain special classes of matroids.

Theorem 4 (Wild). RBC is true for strongly base-orderable matroids.

Theorem 5 (Geelen–Humphries). RBC is true for paving matroids.

Variants of the problem

Discussion

References

Other links