De Bruijn-Newman constant: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
:<math>\displaystyle \Phi(u) := \sum_{n=1}^\infty (2\pi^2 n^4 e^{9u} - 3 \pi n^2 e^{5u}) \exp(-\pi n^2 e^{4u}).</math> | :<math>\displaystyle \Phi(u) := \sum_{n=1}^\infty (2\pi^2 n^4 e^{9u} - 3 \pi n^2 e^{5u}) \exp(-\pi n^2 e^{4u}).</math> | ||
It is known that <math>\Phi</math> is even, and that <math>H_t</math> is even, real on the real axis, and obeys the functional equation <math>H_t(\overline{z}) = \overline{H_t(z)}</math>. In particular, the zeroes of <math>H_t</math> are symmetric about both the real and imaginary axes. | It is known that <math>\Phi</math> is even, and that <math>H_t</math> is even, real on the real axis, and obeys the functional equation <math>H_t(\overline{z}) = \overline{H_t(z)}</math>. In particular, the zeroes of <math>H_t</math> are symmetric about both the real and imaginary axes. One can also express <math>H_t</math> in a number of different forms, such as | ||
:<math>\displaystyle H_t(z) = \frac{1}{2} \int_{\bf R} e^{tu^2} \Phi(u) e^{izu}\ du</math> | |||
or | |||
:<math>\displaystyle H_t(z) = \frac{1}{2} \int_{\bf R} e^{t\log^2 x} \Phi(\log x) e^{iz \log x}\ \frac{dx}{x}.</math> | |||
In the notation of [KKL2009], one has | |||
:<math>\displaystyle H_t(z) = \Xi_{4t}(2z).</math> | |||
De Bruijn [B1950] and Newman [N1976] showed that there existed a constant, the ''de Bruijn-Newman constant'' <math>\Lambda</math>, such that <math>H_t</math> has all zeroes real precisely when <math>t \geq \Lambda</math>. The Riemann hypothesis is equivalent to the claim that <math>\Lambda \leq 0</math>. Currently it is known that <math>0 \leq \Lambda < 1/2</math> (lower bound in [RT2018], upper bound in [KKL2009]). | De Bruijn [B1950] and Newman [N1976] showed that there existed a constant, the ''de Bruijn-Newman constant'' <math>\Lambda</math>, such that <math>H_t</math> has all zeroes real precisely when <math>t \geq \Lambda</math>. The Riemann hypothesis is equivalent to the claim that <math>\Lambda \leq 0</math>. Currently it is known that <math>0 \leq \Lambda < 1/2</math> (lower bound in [RT2018], upper bound in [KKL2009]). | ||
Line 21: | Line 31: | ||
:<math>\displaystyle \xi(s) := \frac{s(s-1)}{2} \pi^{s/2} \Gamma(s/2) \zeta(s)</math> | :<math>\displaystyle \xi(s) := \frac{s(s-1)}{2} \pi^{s/2} \Gamma(s/2) \zeta(s)</math> | ||
is the Riemann xi function. In particular, <math>z</math> is a zero of <math>H_0</math> if and only if <math>\frac{1}{2} + \frac{iz}{2}</math> is a non-trivial zero of the Riemann zeta function. | is the Riemann xi function. In particular, <math>z</math> is a zero of <math>H_0</math> if and only if <math>\frac{1}{2} + \frac{iz}{2}</math> is a non-trivial zero of the Riemann zeta function. Thus, for instance, the Riemann hypothesis is equivalent to all the zeroes of <math>H_0</math> | ||
being real, and [https://en.wikipedia.org/wiki/Riemann%E2%80%93von_Mangoldt_formula Riemann-von Mangoldt formula] (in the explicit form given by Backlund) gives | |||
:<math>\displaystyle N_0(T) - (\frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} - \frac{7}{8})| < 0.137 \log (T/2) + 0.443 \log\log(T/2) + 4.350 </math> | |||
for any <math>T > 4</math>, where <math>N_0(T)</math> denotes the number of zeroes of <math>H_0</math> with real part between 0 and T. | |||
The first <math>10^{13}</math> zeroes of <math>H_0</math> (to the right of the origin) are real [G2004]. This numerical computation uses the Odlyzko-Schonhage algorithm. | |||
== <math>t>0</math> == | == <math>t>0</math> == | ||
Line 38: | Line 56: | ||
where the sum may have to be interpreted in a principal value sense. (See for instance [CSV1994, Lemma 2.4]. This lemma assumes that <math>t > \Lambda</math>, but it is likely that one can extend to other <math>t \geq 0</math> as well.) | where the sum may have to be interpreted in a principal value sense. (See for instance [CSV1994, Lemma 2.4]. This lemma assumes that <math>t > \Lambda</math>, but it is likely that one can extend to other <math>t \geq 0</math> as well.) | ||
In [KKL2009, Theorem 1.4], it is shown that for any fixed <math>t>0</math>, the number <math>N_t(T)</math> of zeroes of <math>H_t</math> with real part between 0 and T obeys the asymptotic | |||
:<math>N_t(T) = \frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} + t \log T + O(1) </math> | |||
as <math>T \to \infty</math> (caution: the error term here is not uniform in t). Also, the zeroes behave like an arithmetic progression in the sense that | |||
:<math> z_{k+1}(t) - z_k(t) = (1+o(1)) \frac{4\pi}{\log |z_k|(t)} = (1+o(1)) \frac{4\pi}{\log k} </math> | |||
as <math>k \to +\infty</math>. | |||
== Threads == | |||
* [https://terrytao.wordpress.com/2018/01/24/polymath-proposal-upper-bounding-the-de-bruijn-newman-constant/ Polymath proposal: upper bounding the de Bruijn-Newman constant], Terence Tao, Jan 24, 2018. | |||
== Other blog posts and online discussion == | |||
* [https://terrytao.wordpress.com/2017/10/17/heat-flow-and-zeroes-of-polynomials/ Heat flow and zeroes of polynomials], Terence Tao, Oct 17, 2017. | |||
* [https://terrytao.wordpress.com/2018/01/19/the-de-bruijn-newman-constant-is-non-negativ/ The de Bruijn-Newman constant is non-negative], Terence Tao, Jan 19, 2018. | |||
* [https://terrytao.wordpress.com/2018/01/20/lehmer-pairs-and-gue/ Lehmer pairs and GUE], Terence Tao, Jan 20, 2018. | |||
* [https://polymathprojects.org/2018/01/26/a-new-polymath-proposal-related-to-the-riemann-hypothesis-over-taos-blog/ A new polymath proposal (related to the Riemann hypothesis) over Tao's blog], Gil Kalai, Jan 26, 2018. | |||
== Code and data == | |||
* [https://github.com/km-git-acc/dbn_upper_bound Github repository] | |||
== Wikipedia and other references == | == Wikipedia and other references == | ||
Line 48: | Line 92: | ||
* [B1950] N. C. de Bruijn, The roots of trigonometric integrals, Duke J. Math. 17 (1950), 197–226. | * [B1950] N. C. de Bruijn, The roots of trigonometric integrals, Duke J. Math. 17 (1950), 197–226. | ||
* [CSV1994] G. Csordas, W. Smith, R. S. Varga, [https://link.springer.com/article/10.1007/BF01205170 Lehmer pairs of zeros, the de Bruijn-Newman constant Λ, and the Riemann hypothesis], Constr. Approx. 10 (1994), no. 1, 107–129. | * [CSV1994] G. Csordas, W. Smith, R. S. Varga, [https://link.springer.com/article/10.1007/BF01205170 Lehmer pairs of zeros, the de Bruijn-Newman constant Λ, and the Riemann hypothesis], Constr. Approx. 10 (1994), no. 1, 107–129. | ||
* [G2004] Gourdon, Xavier (2004), [http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf The <math>10^13</math> first zeros of the Riemann Zeta function, and zeros computation at very large height] | |||
* [KKL2009] H. Ki, Y. O. Kim, and J. Lee, On the de Bruijn-Newman constant, Advances in Mathematics, 22 (2009), 281–306. [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.5595&rep=rep1&type=pdf Citeseer] | * [KKL2009] H. Ki, Y. O. Kim, and J. Lee, On the de Bruijn-Newman constant, Advances in Mathematics, 22 (2009), 281–306. [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.5595&rep=rep1&type=pdf Citeseer] | ||
* [N1976] C. M. Newman, Fourier transforms with only real zeroes, Proc. Amer. Math. Soc. 61 (1976), 246–251. | * [N1976] C. M. Newman, Fourier transforms with only real zeroes, Proc. Amer. Math. Soc. 61 (1976), 246–251. | ||
* [RT2018] B. Rodgers, T. Tao, The de Bruijn-Newman constant is negative, preprint. [https://arxiv.org/abs/1801.05914 arXiv:1801.05914] | * [RT2018] B. Rodgers, T. Tao, The de Bruijn-Newman constant is negative, preprint. [https://arxiv.org/abs/1801.05914 arXiv:1801.05914] |
Revision as of 08:14, 26 January 2018
For each real number [math]\displaystyle{ t }[/math], define the entire function [math]\displaystyle{ H_t: {\mathbf C} \to {\mathbf C} }[/math] by the formula
- [math]\displaystyle{ \displaystyle H_t(z) := \int_0^\infty e^{tu^2} \Phi(u) \cos(zu)\ du }[/math]
where [math]\displaystyle{ \Phi }[/math] is the super-exponentially decaying function
- [math]\displaystyle{ \displaystyle \Phi(u) := \sum_{n=1}^\infty (2\pi^2 n^4 e^{9u} - 3 \pi n^2 e^{5u}) \exp(-\pi n^2 e^{4u}). }[/math]
It is known that [math]\displaystyle{ \Phi }[/math] is even, and that [math]\displaystyle{ H_t }[/math] is even, real on the real axis, and obeys the functional equation [math]\displaystyle{ H_t(\overline{z}) = \overline{H_t(z)} }[/math]. In particular, the zeroes of [math]\displaystyle{ H_t }[/math] are symmetric about both the real and imaginary axes. One can also express [math]\displaystyle{ H_t }[/math] in a number of different forms, such as
- [math]\displaystyle{ \displaystyle H_t(z) = \frac{1}{2} \int_{\bf R} e^{tu^2} \Phi(u) e^{izu}\ du }[/math]
or
- [math]\displaystyle{ \displaystyle H_t(z) = \frac{1}{2} \int_{\bf R} e^{t\log^2 x} \Phi(\log x) e^{iz \log x}\ \frac{dx}{x}. }[/math]
In the notation of [KKL2009], one has
- [math]\displaystyle{ \displaystyle H_t(z) = \Xi_{4t}(2z). }[/math]
De Bruijn [B1950] and Newman [N1976] showed that there existed a constant, the de Bruijn-Newman constant [math]\displaystyle{ \Lambda }[/math], such that [math]\displaystyle{ H_t }[/math] has all zeroes real precisely when [math]\displaystyle{ t \geq \Lambda }[/math]. The Riemann hypothesis is equivalent to the claim that [math]\displaystyle{ \Lambda \leq 0 }[/math]. Currently it is known that [math]\displaystyle{ 0 \leq \Lambda \lt 1/2 }[/math] (lower bound in [RT2018], upper bound in [KKL2009]).
[math]\displaystyle{ t=0 }[/math]
When [math]\displaystyle{ t=0 }[/math], one has
- [math]\displaystyle{ \displaystyle H_0(z) = \frac{1}{8} \xi( \frac{1}{2} + \frac{iz}{2} ) }[/math]
where
- [math]\displaystyle{ \displaystyle \xi(s) := \frac{s(s-1)}{2} \pi^{s/2} \Gamma(s/2) \zeta(s) }[/math]
is the Riemann xi function. In particular, [math]\displaystyle{ z }[/math] is a zero of [math]\displaystyle{ H_0 }[/math] if and only if [math]\displaystyle{ \frac{1}{2} + \frac{iz}{2} }[/math] is a non-trivial zero of the Riemann zeta function. Thus, for instance, the Riemann hypothesis is equivalent to all the zeroes of [math]\displaystyle{ H_0 }[/math]
being real, and Riemann-von Mangoldt formula (in the explicit form given by Backlund) gives
- [math]\displaystyle{ \displaystyle N_0(T) - (\frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} - \frac{7}{8})| \lt 0.137 \log (T/2) + 0.443 \log\log(T/2) + 4.350 }[/math]
for any [math]\displaystyle{ T \gt 4 }[/math], where [math]\displaystyle{ N_0(T) }[/math] denotes the number of zeroes of [math]\displaystyle{ H_0 }[/math] with real part between 0 and T.
The first [math]\displaystyle{ 10^{13} }[/math] zeroes of [math]\displaystyle{ H_0 }[/math] (to the right of the origin) are real [G2004]. This numerical computation uses the Odlyzko-Schonhage algorithm.
[math]\displaystyle{ t\gt 0 }[/math]
For any [math]\displaystyle{ t\gt 0 }[/math], it is known that all but finitely many of the zeroes of [math]\displaystyle{ H_t }[/math] are real and simple [KKL2009, Theorem 1.3]
Let [math]\displaystyle{ \sigma_{max}(t) }[/math] denote the largest imaginary part of a zero of [math]\displaystyle{ H_t }[/math], thus [math]\displaystyle{ \sigma_{max}(t)=0 }[/math] if and only if [math]\displaystyle{ t \geq \Lambda }[/math]. It is known that the quantity [math]\displaystyle{ \frac{1}{2} \sigma_{max}(t)^2 + t }[/math] is non-decreasing in time whenever [math]\displaystyle{ \sigma_{max}(t)\gt 0 }[/math] (see [KKL2009, Proposition A]. In particular we have
- [math]\displaystyle{ \displaystyle \Lambda \leq t + \frac{1}{2} \sigma_{max}(t)^2 }[/math]
for any [math]\displaystyle{ t }[/math].
The zeroes [math]\displaystyle{ z_j(t) }[/math] of [math]\displaystyle{ H_t }[/math] (formally, at least) obey the system of ODE
- [math]\displaystyle{ \partial_t z_j(t) = - \sum_{k \neq j} \frac{2}{z_k(t) - z_j(t)} }[/math]
where the sum may have to be interpreted in a principal value sense. (See for instance [CSV1994, Lemma 2.4]. This lemma assumes that [math]\displaystyle{ t \gt \Lambda }[/math], but it is likely that one can extend to other [math]\displaystyle{ t \geq 0 }[/math] as well.)
In [KKL2009, Theorem 1.4], it is shown that for any fixed [math]\displaystyle{ t\gt 0 }[/math], the number [math]\displaystyle{ N_t(T) }[/math] of zeroes of [math]\displaystyle{ H_t }[/math] with real part between 0 and T obeys the asymptotic
- [math]\displaystyle{ N_t(T) = \frac{T}{4\pi} \log \frac{T}{4\pi} - \frac{T}{4\pi} + t \log T + O(1) }[/math]
as [math]\displaystyle{ T \to \infty }[/math] (caution: the error term here is not uniform in t). Also, the zeroes behave like an arithmetic progression in the sense that
- [math]\displaystyle{ z_{k+1}(t) - z_k(t) = (1+o(1)) \frac{4\pi}{\log |z_k|(t)} = (1+o(1)) \frac{4\pi}{\log k} }[/math]
as [math]\displaystyle{ k \to +\infty }[/math].
Threads
- Polymath proposal: upper bounding the de Bruijn-Newman constant, Terence Tao, Jan 24, 2018.
Other blog posts and online discussion
- Heat flow and zeroes of polynomials, Terence Tao, Oct 17, 2017.
- The de Bruijn-Newman constant is non-negative, Terence Tao, Jan 19, 2018.
- Lehmer pairs and GUE, Terence Tao, Jan 20, 2018.
- A new polymath proposal (related to the Riemann hypothesis) over Tao's blog, Gil Kalai, Jan 26, 2018.
Code and data
Wikipedia and other references
Bibliography
- [B1950] N. C. de Bruijn, The roots of trigonometric integrals, Duke J. Math. 17 (1950), 197–226.
- [CSV1994] G. Csordas, W. Smith, R. S. Varga, Lehmer pairs of zeros, the de Bruijn-Newman constant Λ, and the Riemann hypothesis, Constr. Approx. 10 (1994), no. 1, 107–129.
- [G2004] Gourdon, Xavier (2004), The [math]\displaystyle{ 10^13 }[/math] first zeros of the Riemann Zeta function, and zeros computation at very large height
- [KKL2009] H. Ki, Y. O. Kim, and J. Lee, On the de Bruijn-Newman constant, Advances in Mathematics, 22 (2009), 281–306. Citeseer
- [N1976] C. M. Newman, Fourier transforms with only real zeroes, Proc. Amer. Math. Soc. 61 (1976), 246–251.
- [RT2018] B. Rodgers, T. Tao, The de Bruijn-Newman constant is negative, preprint. arXiv:1801.05914