Dynamics of zeros: Difference between revisions
Created page with "This is a sub-page of page on the De Bruijn-Newman constant, and assumes all the notation from that page. The entire functions <math>H_t(z)</math> obey the backwards heat..." |
No edit summary |
||
Line 4: | Line 4: | ||
:<math>\displaystyle \partial_t H_t(z) = - \partial_{zz} H_t(z).</math> | :<math>\displaystyle \partial_t H_t(z) = - \partial_{zz} H_t(z).</math> | ||
== Dynamics of a simple zero == | |||
If <math>H_t</math> has a simple zero at <math>z_j(t)</math>, then by the implicit function theorem <math>z_j(t)</math> varies in a continuously differentiable manner (in fact analytic) for nearby times <math>t</math>. By implicitly differentiating the equation <math>H_t(z_j(t)) = 0</math>, we see that | If <math>H_t</math> has a simple zero at <math>z_j(t)</math>, then by the implicit function theorem <math>z_j(t)</math> varies in a continuously differentiable manner (in fact analytic) for nearby times <math>t</math>. By implicitly differentiating the equation <math>H_t(z_j(t)) = 0</math>, we see that | ||
:<math>\displaystyle \partial_t z_j(t) = \frac{\partial_{zz} H_t(z_j(t))}{\partial_z H_t(z_j(t))}.</math> | :<math>\displaystyle \partial_t z_j(t) = - \frac{\partial_t H_t(z_j(t))}{\partial_z H_t(z_j(t))} = \frac{\partial_{zz} H_t(z_j(t))}{\partial_z H_t(z_j(t))}.</math> | ||
Being a simple zero, we have the Taylor expansion | (See also [CSV1994, Lemma 2.1].) Being a simple zero, we have the Taylor expansion | ||
:<math>\displaystyle H_t(z) = a (z-z_j(t)) + b (z-z_j(t))^2 + O( |z-z_j(t)|^3 )</math> | :<math>\displaystyle H_t(z) = a (z-z_j(t)) + b (z-z_j(t))^2 + O( |z-z_j(t)|^3 )</math> | ||
Line 18: | Line 20: | ||
:<math>\displaystyle \partial_{zz} H_t(z) = 2 b + O( |z-z_j(t)| )</math> | :<math>\displaystyle \partial_{zz} H_t(z) = 2 b + O( |z-z_j(t)| )</math> | ||
which implies that | |||
:<math>\frac{\partial_{zz} H_t(z_j(t))}{\partial_z H_t(z_j(t))} = \frac{2b}{a}</math> | |||
and also that | |||
:<math>\frac{\partial_{z} H_t(z)}{H_t(z)} = \frac{1}{z-z_j(t)} + \frac{b}{a} + O( |z-z_j(t)| )</math> | |||
and thus | |||
:<math>\displaystyle \partial_t z_j(t) = 2 \lim_{z \to z_j(t)} \frac{\partial_z H_t(z)}{H_t(z)} - \frac{1}{z-z_j(t)}.</math> | |||
As <math>H_t</math> is even, of order 1, and has no zero at the origin, we see from the [https://en.wikipedia.org/wiki/Weierstrass_factorization_theorem Hadamard factorisation theorem] that | |||
:<math>H_t(z) = C_t \prod_{k=1}^\infty (1 - \frac{z}{z_k(t)}) (1 + \frac{z}{z_k(t)})</math> | |||
for some constant <math>C_t</math>, and hence | |||
:<math>\frac{\partial_z H_t(z)}{H_t(z)} = \sum_k \frac{1}{z - z_k(t)}</math> | |||
where the sum is in a principal value sense. Thus we have | |||
:<math>\displaystyle \partial_t z_j(t) = - 2 \sum_{k \neq j} \frac{1}{z_j(t) - z_k(t)} </math> | |||
where the sum is again in a principal value sense (cf. [CSV1994, Lemma 2.4]). | |||
== Dynamics of a repeated zero == | |||
Now suppose that at some time <math>t_0</math> one has a repeated zero at <math>z_0</math> of some order <math>k \geq 1</math>, thus | |||
:<math>\displaystyle H_{t_0}(z) = a_k (z-z_0)^k + O( |z-z_0|^{k+1} )</math> | |||
for some non-zero <math>a_k</math> and <math>z</math> close to <math>. Using the backwards heat equation we then have | |||
:<math>\displaystyle \partial_t H_{t_0}(z) = - k(k-1) a_k (z-z_0)^{k-2} + O( |z-z_0|^{\max(k-1,0)} )</math> | |||
and more generally | |||
:<math>\displaystyle \partial_t^j H_{t_0}(z) = (-1)^j k(k-1) \dots (k-2j+1) a_k (z-z_0)^{k-2j} + O( |z-z_0|^{\max(k-2j+1,0)} )</math> | |||
for any fixed <math>j</math>. Performing Taylor expansion in time, we conclude that in the regime <math>z - z_0 = O( |t-t_0|^{1/2} )</math> and <math>t</math> close to but not equal to <math>t_0</math>, one has | |||
:<math>\displaystyle H_t(z) = a_k ((t-t_0)^{1/2})^k ( P_k( \frac{z-z_0}{(t-t_0)^{1/2}} ) + O( |t-t_0|^{1/2} ) ) </math> | |||
where we use some branch of the square root and <math>P_k</math> is the degree <math>k</math> polynomial | |||
:<math> P_k(z) := \sum_{0 \leq j \leq k/2} (-1)^j k (k-1) \dots (k-2j+1) z^{k-2j}.</math> | |||
We claim that the <math>k</math> zeroes <math>x_{k,1},\dots,x_{k,k}</math> of <math>P_k</math> are real and simple. If so, then by Rouche's theorem we conclude that for <math>t</math> close to <math>t_0</math>, the <math>k</math> zeroes of <math>H_t</math> close to <math>z_0</math> take the form | |||
:<math> z_0 + (t-t_0)^{1/2}( x_j + O( |t-t_0|^{1/2} ) )</math> | |||
for <math>j=1,\dots,k</math>. In particular, the zeroes approach <math>z_0</math> from an asymptotically vertical direction as <math>t \to t_0^-</math> and repel in an asymptotically horizontal direction as <math>t \to t_0^+</math>. |
Revision as of 10:48, 30 January 2018
This is a sub-page of page on the De Bruijn-Newman constant, and assumes all the notation from that page.
The entire functions [math]\displaystyle{ H_t(z) }[/math] obey the backwards heat equation
- [math]\displaystyle{ \displaystyle \partial_t H_t(z) = - \partial_{zz} H_t(z). }[/math]
Dynamics of a simple zero
If [math]\displaystyle{ H_t }[/math] has a simple zero at [math]\displaystyle{ z_j(t) }[/math], then by the implicit function theorem [math]\displaystyle{ z_j(t) }[/math] varies in a continuously differentiable manner (in fact analytic) for nearby times [math]\displaystyle{ t }[/math]. By implicitly differentiating the equation [math]\displaystyle{ H_t(z_j(t)) = 0 }[/math], we see that
- [math]\displaystyle{ \displaystyle \partial_t z_j(t) = - \frac{\partial_t H_t(z_j(t))}{\partial_z H_t(z_j(t))} = \frac{\partial_{zz} H_t(z_j(t))}{\partial_z H_t(z_j(t))}. }[/math]
(See also [CSV1994, Lemma 2.1].) Being a simple zero, we have the Taylor expansion
- [math]\displaystyle{ \displaystyle H_t(z) = a (z-z_j(t)) + b (z-z_j(t))^2 + O( |z-z_j(t)|^3 ) }[/math]
for some complex numbers [math]\displaystyle{ a,b }[/math] with [math]\displaystyle{ a \neq 0 }[/math], and for [math]\displaystyle{ z }[/math] close to [math]\displaystyle{ z_j(t) }[/math]. In particular
- [math]\displaystyle{ \displaystyle \partial_z H_t(z) = a + 2 b (z-z_j(t))^2 + O( |z-z_j(t)|^2 ) }[/math]
- [math]\displaystyle{ \displaystyle \partial_{zz} H_t(z) = 2 b + O( |z-z_j(t)| ) }[/math]
which implies that
- [math]\displaystyle{ \frac{\partial_{zz} H_t(z_j(t))}{\partial_z H_t(z_j(t))} = \frac{2b}{a} }[/math]
and also that
- [math]\displaystyle{ \frac{\partial_{z} H_t(z)}{H_t(z)} = \frac{1}{z-z_j(t)} + \frac{b}{a} + O( |z-z_j(t)| ) }[/math]
and thus
- [math]\displaystyle{ \displaystyle \partial_t z_j(t) = 2 \lim_{z \to z_j(t)} \frac{\partial_z H_t(z)}{H_t(z)} - \frac{1}{z-z_j(t)}. }[/math]
As [math]\displaystyle{ H_t }[/math] is even, of order 1, and has no zero at the origin, we see from the Hadamard factorisation theorem that
- [math]\displaystyle{ H_t(z) = C_t \prod_{k=1}^\infty (1 - \frac{z}{z_k(t)}) (1 + \frac{z}{z_k(t)}) }[/math]
for some constant [math]\displaystyle{ C_t }[/math], and hence
- [math]\displaystyle{ \frac{\partial_z H_t(z)}{H_t(z)} = \sum_k \frac{1}{z - z_k(t)} }[/math]
where the sum is in a principal value sense. Thus we have
- [math]\displaystyle{ \displaystyle \partial_t z_j(t) = - 2 \sum_{k \neq j} \frac{1}{z_j(t) - z_k(t)} }[/math]
where the sum is again in a principal value sense (cf. [CSV1994, Lemma 2.4]).
Dynamics of a repeated zero
Now suppose that at some time [math]\displaystyle{ t_0 }[/math] one has a repeated zero at [math]\displaystyle{ z_0 }[/math] of some order [math]\displaystyle{ k \geq 1 }[/math], thus
- [math]\displaystyle{ \displaystyle H_{t_0}(z) = a_k (z-z_0)^k + O( |z-z_0|^{k+1} ) }[/math]
for some non-zero [math]\displaystyle{ a_k }[/math] and [math]\displaystyle{ z }[/math] close to [math]\displaystyle{ . Using the backwards heat equation we then have :\lt math\gt \displaystyle \partial_t H_{t_0}(z) = - k(k-1) a_k (z-z_0)^{k-2} + O( |z-z_0|^{\max(k-1,0)} ) }[/math]
and more generally
- [math]\displaystyle{ \displaystyle \partial_t^j H_{t_0}(z) = (-1)^j k(k-1) \dots (k-2j+1) a_k (z-z_0)^{k-2j} + O( |z-z_0|^{\max(k-2j+1,0)} ) }[/math]
for any fixed [math]\displaystyle{ j }[/math]. Performing Taylor expansion in time, we conclude that in the regime [math]\displaystyle{ z - z_0 = O( |t-t_0|^{1/2} ) }[/math] and [math]\displaystyle{ t }[/math] close to but not equal to [math]\displaystyle{ t_0 }[/math], one has
- [math]\displaystyle{ \displaystyle H_t(z) = a_k ((t-t_0)^{1/2})^k ( P_k( \frac{z-z_0}{(t-t_0)^{1/2}} ) + O( |t-t_0|^{1/2} ) ) }[/math]
where we use some branch of the square root and [math]\displaystyle{ P_k }[/math] is the degree [math]\displaystyle{ k }[/math] polynomial
- [math]\displaystyle{ P_k(z) := \sum_{0 \leq j \leq k/2} (-1)^j k (k-1) \dots (k-2j+1) z^{k-2j}. }[/math]
We claim that the [math]\displaystyle{ k }[/math] zeroes [math]\displaystyle{ x_{k,1},\dots,x_{k,k} }[/math] of [math]\displaystyle{ P_k }[/math] are real and simple. If so, then by Rouche's theorem we conclude that for [math]\displaystyle{ t }[/math] close to [math]\displaystyle{ t_0 }[/math], the [math]\displaystyle{ k }[/math] zeroes of [math]\displaystyle{ H_t }[/math] close to [math]\displaystyle{ z_0 }[/math] take the form
- [math]\displaystyle{ z_0 + (t-t_0)^{1/2}( x_j + O( |t-t_0|^{1/2} ) ) }[/math]
for [math]\displaystyle{ j=1,\dots,k }[/math]. In particular, the zeroes approach [math]\displaystyle{ z_0 }[/math] from an asymptotically vertical direction as [math]\displaystyle{ t \to t_0^- }[/math] and repel in an asymptotically horizontal direction as [math]\displaystyle{ t \to t_0^+ }[/math].