Polymath15 test problem: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
Line 924: Line 924:


=== Estimation of <math>E_3</math> ===
=== Estimation of <math>E_3</math> ===
Here we assume that <math>T_0 \geq 100</math>, which implies also <math>T'_0 \geq 100</math>.


We first bound <math>w</math> by a Gaussian type quantity.
We first bound <math>w</math> by a Gaussian type quantity.
Line 932: Line 934:
:<math>1 + \frac{(1-\sigma)^2}{(T'_0)^2} \leq \exp( \frac{(1-\sigma)^2}{(T'_0)^2})</math>
:<math>1 + \frac{(1-\sigma)^2}{(T'_0)^2} \leq \exp( \frac{(1-\sigma)^2}{(T'_0)^2})</math>
and thus
and thus
:<math>( 1 + \frac{\sigma^2}{(T'_0)^2} )^{1/2} (1 + \frac{(1-\sigma)^2}{(T'_0)^2})^{1/2} \leq \exp( \frac{(\sigma-1/2)^2}{(T'_0)^2} + \frac{1}{4 (T'_0)^2} ).</math>
:<math>( 1 + \frac{\sigma^2}{(T'_0)^2} )^{1/2} (1 + \frac{(1-\sigma)^2}{(T'_0)^2})^{1/2} \leq \exp( \frac{1}{2} \frac{\sigma^2}{(T'_0)^2} +
\frac{1}{2} \frac{(1-\sigma)^2}{(T'_0)^2} )</math>
:<math> = \exp( \frac{(\sigma-1/2)^2}{(T'_0)^2} + \frac{1}{4 (T'_0)^2} ).</math>
Next, from calculus one can verify the bounds
Next, from calculus one can verify the bounds
:<math> \log(1+x^2) \leq 1.479 \sqrt{x}</math>
:<math> \log(1+x^2) \leq 1.479 \sqrt{x}</math>
Line 947: Line 951:
:<math> \leq \exp(  0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} + \frac{1}{12(T'_0 - 3.33)}).</math>
:<math> \leq \exp(  0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} + \frac{1}{12(T'_0 - 3.33)}).</math>


Now we work on <math>\nu</math>.  Observe that if <math>k \leq \frac{T'_0}{2.2 \pi} = \frac{a_0^2}{1.1}</math> then
Now we work on <math>\nu</math>.  Observe that if <math>k \leq \frac{T'_0}{2.42 \pi} = \frac{a_0^2}{1.21}</math> then
:<math> (1.1)^{k+2} \frac{\Gamma(\frac{k+2}{2})}{a_0^{k+2}} \leq \frac{1}{2} (1.1)^{k} \frac{\Gamma(\frac{k}{2})}{a_0^{k}},</math>
:<math> (1.1)^{k+2} \frac{\Gamma(\frac{k+2}{2})}{a_0^{k+2}} = \frac{1.21 k}{2 a_0^2} \frac{\Gamma(\frac{k}{2})}{a_0^k} \leq \frac{1}{2} (1.1)^{k} \frac{\Gamma(\frac{k}{2})}{a_0^{k}},</math>
and hence
and hence
:<math> \sum_{2 \leq k \leq \frac{T'_0}{2.2 \pi}; k\ \mathrm{even}} (1.1)^{k} \frac{\Gamma(\frac{k}{2})}{a_0^{k}} \leq 2 (1.1)^2 \frac{\Gamma(\frac{2}{2})}{a_0^2} = \frac{2.42 \sqrt{\pi}}{a_0^2}</math>
:<math> \sum_{2 \leq k \leq \frac{T'_0}{2.24 \pi}; k\ \mathrm{even}} (1.1)^{k} \frac{\Gamma(\frac{k}{2})}{a_0^{k}} \leq 2 (1.1)^2 \frac{\Gamma(\frac{2}{2})}{a_0^2} = \frac{2.42 \sqrt{\pi}}{a_0^2}</math>
and similarly
and similarly
:<math> \sum_{3 \leq k \leq \frac{T'_0}{2.2 \pi}; k\ \mathrm{odd}} (1.1)^{k} \frac{\Gamma(\frac{k}{2})}{a_0^{k}} \leq 2 (1.1)^3 \frac{\Gamma(\frac{3}{2})}{a_0^2} = \frac{1.331}{a_0^3}</math>
:<math> \sum_{3 \leq k \leq \frac{T'_0}{2.42 \pi}; k\ \mathrm{odd}} (1.1)^{k} \frac{\Gamma(\frac{k}{2})}{a_0^{k}} \leq 2 (1.1)^3 \frac{\Gamma(\frac{3}{2})}{a_0^2} = \frac{1.331}{a_0^3}</math>
and hence
and hence
:<math> \sum_{1 \leq k \leq \frac{T'_0}{2.2 \pi}} (1.1)^{k} \frac{\Gamma(\frac{k}{2})}{a_0^{k}} \leq \frac{1.1 \sqrt{\pi}}{a_0} + \frac{2.42}{a_0^2} + \frac{1.331 \sqrt{\pi}}{a_0^3} </math>
:<math> \sum_{1 \leq k \leq \frac{T'_0}{2.42 \pi}} (1.1)^{k} \frac{\Gamma(\frac{k}{2})}{a_0^{k}} \leq \frac{1.1 \sqrt{\pi}}{a_0} + \frac{2.42}{a_0^2} + \frac{1.331 \sqrt{\pi}}{a_0^3} </math>
:<math> \leq \frac{1.1 \sqrt{\pi}}{a_0 - 1.25};</math>
:<math> \leq \frac{1.1 \sqrt{\pi}}{a_0 - 1.25};</math>
also
also
:<math>(0.400 \frac{9^\sigma}{a_0} + 0.346 \frac{2^{3\sigma/2}}{a_0^2})1_{\sigma \geq 0} \leq 0.400 \frac{9^\sigma}{a_0 - 1.25}</math>
:<math>(0.400 \frac{9^\sigma}{a_0} + 0.346 \frac{2^{3\sigma/2}}{a_0^2})1_{\sigma \geq 0} \leq 0.400 \times 9^\sigma (\frac{1}{a_0} + 0.865 \frac{1}{a_0^2})</math>
:<math> \leq 0.4 \frac{9^\sigma}{a_0 - 0.865}</math>
and hence (bounding <math>(0.9)^{\lceil -\sigma \rceil} \leq \frac{1}{1.1}</math>)
and hence (bounding <math>(0.9)^{\lceil -\sigma \rceil} \leq \frac{1}{1.1}</math>)
:<math> v(\sigma) \leq 1 + 0.400 \frac{9^\sigma}{a_0-1.25} + \frac{\sqrt{\pi}}{a_0-1.25} + \sum_{\frac{T'_0}{2.2 \pi} < k \leq 4-\sigma} \frac{(1.1)^{k-1}}{a_0^k} \Gamma(k/2).</math>
:<math> v(\sigma) \leq 1 + 0.400 \frac{9^\sigma}{a_0-0.865} + \frac{\sqrt{\pi}}{a_0-1.25} + \sum_{\frac{T'_0}{2.42 \pi} < k \leq 4-\sigma} \frac{(1.1)^{k-1}}{a_0^k} \Gamma(k/2).</math>
We conclude (using Fubini's theorem) that
We conclude (using Fubini's theorem) that
:<math> \int_{-\infty}^\infty vwf(\sigma)\ d\sigma \leq \exp(\frac{1}{12(T'_0 - 3.33)}) (
:<math> \int_{-\infty}^\infty vwf(\sigma)\ d\sigma \leq \exp(\frac{1}{12(T'_0 - 3.33)}) (
(1 + \frac{\sqrt{\pi}}{a_0-1.25}) \int_{-\infty}^\infty f(\sigma) \exp(  0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma </math>
(1 + \frac{\sqrt{\pi}}{a_0-1.25}) \int_{-\infty}^\infty f(\sigma) \exp(  0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma </math>
:<math> + \frac{0.4}{a_0-1.25} \int_{-\infty}^\infty 9^\sigma f(\sigma) \exp(  0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma </math>
:<math> + \frac{0.4}{a_0-0.865} \int_{-\infty}^\infty 9^\sigma f(\sigma) \exp(  0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma </math>
:<math> + \sum_{k > \frac{T'_0}{2.2\pi}} \frac{(1.1)^{k-1}}{a_0^k} \Gamma(k/2) \int_{-\infty}^{4-k} f(\sigma) \exp(  0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma.)</math>
:<math> + \sum_{k > \frac{T'_0}{2.42\pi}} \frac{(1.1)^{k-1}}{a_0^k} \Gamma(k/2) \int_{-\infty}^{4-k} f(\sigma) \exp(  0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma.)</math>
Now we estimate the integrals appearing in the right-hand side.  By symmetry we have
Now we estimate the integrals appearing in the right-hand side.  By symmetry we have
:<math>\int_{-\infty}^\infty f(\sigma) \exp(  0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma  
:<math>\int_{-\infty}^\infty f(\sigma) \exp(  0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma  
Line 981: Line 986:
where
where
:<math> b := - \log 9 + 0.37 \frac{y}{T'_0 - 2.71}.</math>
:<math> b := - \log 9 + 0.37 \frac{y}{T'_0 - 2.71}.</math>
If <math>T'_0 \geq 20</math> and <math>y \leq 1/2</math> then <math>|b| \leq \log 9</math>, thus the above integral is at most
If <math>T'_0 \geq 100</math> and <math>y \leq 1/2</math> then <math>|b| \leq \log 9</math>, thus the above integral is at most
:<math>= 3^{1+y} (1 - \frac{0.37 t}{T'_0 - 2.71})^{-1/2} \exp( 0.37 \frac{y^2}{4 (T'_0-2.71)} + \frac{t \log^2 9}{4 (1 - \frac{0.37 t}{T'_0-2.71})} ).</math>
:<math>= 3^{1+y} (1 - \frac{0.37 t}{T'_0 - 2.71})^{-1/2} \exp( 0.37 \frac{y^2}{4 (T'_0-2.71)} + \frac{t \log^2 9}{4 (1 - \frac{0.37 t}{T'_0-2.71})} ).</math>
Now we consider the integral
Now we consider the integral
:<math> \int_{-\infty}^{4-k} f(\sigma) \exp(  0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma.</math>
:<math> \int_{-\infty}^{4-k} f(\sigma) \exp(  0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma.</math>
If we assume that <math>T_0 \geq 100</math>, then <math>4-k</math> is negative, so this expression is at most
If we assume that <math>T_0 \geq 100</math>, then <math>4-k \leq 4 - \frac{100}{2.42 \pi} \leq -9</math> is negative, so this expression is at most
:<math>\leq \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{4-k} \exp( - \frac{(\sigma - (1-y)/2)^2}{t} + 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma</math>
:<math>\leq \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{4-k} \exp( - \frac{(\sigma - (1-y)/2)^2}{t} + 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma</math>
:<math> \leq \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{4-k} \exp( - \sigma^2 (\frac{1}{t} - \frac{0.37}{T'_0-2.71}) )\ d\sigma</math>
:<math> \leq \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{4-k} \exp( - \sigma^2 (\frac{1}{t} - \frac{0.37}{T'_0-2.71}) )\ d\sigma.</math>
:<math> \leq \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{4-k} \exp( - 2 \sigma^2 )\ d\sigma</math>
With <math>t \leq 0.4</math> and <math>T'_0 \geq 100</math>, one can verify numerically that
:<math> \leq \frac{1}{\sqrt{\pi t}} \exp( - 2 (k - 4)^2 ) \frac{1}{4 (k - 4)}</math>
:<math>\frac{1}{t} - \frac{0.37}{T'_0-2.71} \geq 2 + \frac{1}{2} \log t</math>
(assuming <math>t \leq 0.4</math>)
and so (since <math> \sigma^2 \geq 1 </math>) one can bound the above by
:<math> \leq \frac{1}{\sqrt{\pi}} \int_{-\infty}^{4-k} \exp( - 2 \sigma^2 )\ d\sigma</math>
:<math> \leq \frac{1}{\sqrt{\pi}} \exp( - 2 (k - 4)^2 ) \frac{1}{4 (k - 4)}</math>
and so the contribution to <math>\int_{-\infty}^\infty vwf(\sigma)\ d\sigma)</math> is at most
and so the contribution to <math>\int_{-\infty}^\infty vwf(\sigma)\ d\sigma)</math> is at most
:<math> \frac{1}{4 (\frac{T'_0}{2.2\pi} - 4) \sqrt{\pi t}}  \sum_{k > \frac{T'_0}{2.2\pi}} a_k</math>
:<math> \frac{1}{4 (\frac{T'_0}{2.42\pi} - 4) \sqrt{\pi}}  \sum_{k > \frac{T'_0}{2.42\pi}} c_k</math>
where
where
:<math>a_k := \frac{(1.1)^{k-1}}{a_0^k} \Gamma(k/2) \exp( - 2(k-4)^2 ).</math>
:<math>c_k := \frac{(1.1)^{k-1}}{a_0^k} \Gamma(k/2) \exp( - 2(k-4)^2 ).</math>


Observe that
Observe that
:<math>a_{k+2}/a_k = \frac{(1.1)^2}{a_0^2} \frac{k}{2} \exp( - 4 (k+5)  )</math>
:<math>c_{k+2}/c_k = \frac{(1.1)^2}{a_0^2} \frac{k}{2} \exp( - 4 (k+5)  )</math>
and this can be shown to be less than <math>1/2</math> if <math>T_0 \geq 100</math>, and <math>k > \frac{T'_0}{2.2 \pi}</math>.  Thus
and this can be shown to be less than <math>1/2</math> if <math>T_0 \geq 100</math>, and <math>k > \frac{T'_0}{2.42 \pi}</math>.  Thus
:<math>\sum_{k > \frac{T'_0}{2.2\pi}} a_k \leq 4 \sup_{\frac{T'_0}{2.2\pi} < k \leq \frac{T'_0}{2.2\pi}+2} a_k</math>
:<math>\sum_{k > \frac{T'_0}{2.42\pi}} c_k \leq 4 \sup_{\frac{T'_0}{2.42\pi} < k \leq \frac{T'_0}{2.42\pi}+2} a_k</math>
:<math> \leq 4 (\frac{1.1}{a_0})^{\frac{T'_0}{2.2\pi}} \Gamma( \frac{T'_0}{4.4\pi}+1 ) \exp( - 4 (\frac{T'_0}{2.2\pi}-4)^2 ).</math>
:<math> \leq 4 (\frac{1.1}{a_0})^{\frac{T'_0}{2.42\pi}} \Gamma( \frac{T'_0}{4.84\pi}+1 ) \exp( - 4 (\frac{T'_0}{2.42\pi}-4)^2 ).</math>


Putting all this together, we obtain
Putting all this together, we obtain
Line 1,006: Line 1,013:
  \exp(\frac{1}{12(T'_0 - 3.33)}) (1 - \frac{0.37 t}{T'_0 - 2.71})^{-1/2} \exp( \frac{0.37 y^2}{4 (T'_0 - 2.71 - 0.37 t)} ) \times </math>
  \exp(\frac{1}{12(T'_0 - 3.33)}) (1 - \frac{0.37 t}{T'_0 - 2.71})^{-1/2} \exp( \frac{0.37 y^2}{4 (T'_0 - 2.71 - 0.37 t)} ) \times </math>
:<math>
:<math>
(1 + \frac{\sqrt{\pi}}{a_0-1.25} + \frac{0.4}{a_0-1.25}
(1 + \frac{\sqrt{\pi}}{a_0-1.25} + \frac{0.4}{a_0-0.85}
3^{1+y} \exp( \frac{\log^2 9}{4 (\frac{1}{t} - \frac{0.37}{T'_0-2.71})} ) )</math>
3^{1+y} \exp( \frac{t \log^2 9}{4 (1 - \frac{0.37}{T'_0-2.71})} ) )</math>
:<math> + \varepsilon</math>
:<math> + \varepsilon</math>
where <math>\varepsilon</math> is the exponentially small quantity
where <math>\varepsilon</math> is the exponentially small quantity
:<math> \varepsilon := \exp(\frac{1}{12(T'_0 - 3.33)})
:<math> \varepsilon := \exp(\frac{1}{12(T'_0 - 3.33)})
\frac{1}{(\frac{T'_0}{2.2\pi} - 4) \sqrt{\pi t}}
\frac{1}{(\frac{T'_0}{2.42\pi} - 4) \sqrt{\pi}}
(\frac{1.1}{a_0})^{\frac{T'_0}{2.2\pi}} \Gamma( \frac{T'_0}{4.4\pi}+1 ) \exp( - 4 (\frac{T'_0}{2.2\pi}-4)^2 )</math>
(\frac{1.1}{a_0})^{\frac{T'_0}{2.42\pi}} \Gamma( \frac{T'_0}{4.84\pi}+1 ) \exp( - 4 (\frac{T'_0}{2.42\pi}-4)^2 )</math>
which looks fearsome but is extremely negligible in practice.
which looks fearsome but is extremely negligible in practice. For instance, one can check that
 
:<math> \varepsilon \leq \frac{10^{-10}}{a_0^2} \leq 0.4 (\frac{1}{a_0-0.85} - \frac{1}{a_0-1.25})</math>
To bound <math>E_3</math>, multiply the above bound by <math>\frac{1}{8} \sqrt{\pi} \exp( - \frac{t\pi^2}{64}) (T'_0)^{3/2} e^{-\pi T_0/4}</math>.
whenever <math>T_0 \geq 100</math>, and hence
:<math>\int_{-\infty}^\infty vwf(\sigma)\ d\sigma \leq
(1 - \frac{0.37 t}{T'_0 - 2.71})^{-1/2} \exp( \frac{1}{12(T'_0 - 3.33)} + \frac{0.37 y^2}{4 (T'_0 - 2.71 - 0.37 t)} ) \times </math>
:<math>
(1 + \frac{\sqrt{\pi}}{a_0-1.25} + \frac{0.4}{a_0-1.25}
3^{1+y} \exp( \frac{t \log^2 9}{4 (1 - \frac{0.37}{T'_0-2.71})} ) ).</math>
To clean this up, we write
:<math>1 - \frac{0.37 t}{T'_0 - 2.71} = \exp( O_{\leq}( \frac{0.37 t}{T'_0 - 2.71 - 0.37 t} )</math>
and note that <math>T'_0 - 2.71 - 0.37t \geq T'_0 - 3.33</math> to obtain
:<math>\int_{-\infty}^\infty vwf(\sigma)\ d\sigma \leq \exp( \frac{6 \times 0.37t + 1 + 3 \times 0.37 y^2}{12(T'_0 - 3.33)}) \times </math>
:<math>
(1 + \frac{1}{a_0-1.25} (\sqrt{\pi} + 1.2 \times 3^y \exp( \frac{t \log^2 9}{4 (1 - \frac{0.37 t}{T'_0-2.71})} ) ).</math>
We bound <math>(6 \times 0.37t + 1 + 3 \times 0.37 y^2)/12 \leq 0.181</math> and <math>1.2 \times 3^y \exp( \frac{t \log^2 9}{4(1 - \frac{0.37 t}{T'_0-2.71}) \leq 5.15</math> for <math>y \leq 1/2</math>, thus
:<math>\int_{-\infty}^\infty vwf(\sigma)\ d\sigma \leq \exp( \frac{0.181}{T'_0 - 3.33}) (1 + \frac{5.15}{a_0-1.25}).</math>
We conclude that
:<math>E_3 \leq \frac{1}{8} \sqrt{\pi} \exp( - \frac{t\pi^2}{64}) (T'_0)^{3/2} e^{-\pi T_0/4} \exp( \frac{0.181}{T'_0 - 3.33}) (1 + \frac{5.15}{a_0-1.25}).</math>

Revision as of 08:55, 1 March 2018

We are initially focusing attention on the following

Test problem For [math]\displaystyle{ t=y=0.4 }[/math], can one prove that [math]\displaystyle{ H_t(x+iy) \neq 0 }[/math] for all [math]\displaystyle{ x \geq 0 }[/math]?

If we can show this, it is likely that (with the additional use of the argument principle, and some further information on the behaviour of [math]\displaystyle{ H_t(x+iy) }[/math] at [math]\displaystyle{ y=0.4 }[/math]) that one can show that [math]\displaystyle{ H_t(x+iy) \neq 0 }[/math] for all [math]\displaystyle{ y \geq 0.4 }[/math] as well. This would give a new upper bound

[math]\displaystyle{ \Lambda \leq 0.4 + \frac{1}{2} (0.4)^2 = 0.48 }[/math]

for the de Bruijn-Newman constant.

For very small values of [math]\displaystyle{ x }[/math] we expect to be able to establish this by direct calculation of [math]\displaystyle{ H_t(x+iy) }[/math]. For medium or large values, the strategy is to use a suitable approximation

[math]\displaystyle{ H_t(x+iy) \approx A + B }[/math]

for some relatively easily computable quantities [math]\displaystyle{ A = A_t(x+iy), B = B_t(x+iy) }[/math] (it may possibly be necessary to use a refined approximation [math]\displaystyle{ A+B-C }[/math] instead). The quantity [math]\displaystyle{ B }[/math] contains a non-zero main term [math]\displaystyle{ B_0 }[/math] which is expected to roughly dominate. To show [math]\displaystyle{ H_t(x+iy) }[/math] is non-zero, it would suffice to show that

[math]\displaystyle{ \frac{|H_t - A - B|}{|B_0|} \lt \frac{|A + B|}{|B_0|}. }[/math]

Thus one will seek upper bounds on the error [math]\displaystyle{ \frac{|H_t - A - B|}{|B_0|} }[/math] and lower bounds on [math]\displaystyle{ \frac{|A+B|}{|B_0|} }[/math] for various ranges of [math]\displaystyle{ x }[/math]. Numerically it seems that the RHS stays above 0.4 as soon as [math]\displaystyle{ x }[/math] is moderately large, while the LHS stays below 0.1, which looks promising for the rigorous arguments.

Choices of approximation

There are a number of slightly different approximations we have used in previous discussion. The first approximation was [math]\displaystyle{ A+B }[/math], where

[math]\displaystyle{ A := \frac{1}{8} \frac{s(s-1)}{2} \pi^{-s/2} \Gamma(s/2) \sum_{n=1}^N \frac{\exp(\frac{t}{16} \log^2 \frac{s+4}{2\pi n^2})}{n^s} }[/math]
[math]\displaystyle{ B := \frac{1}{8} \frac{s(s-1)}{2} \pi^{-(1-s)/2} \Gamma((1-s)/2) \sum_{n=1}^N \frac{\exp(\frac{t}{16} \log^2 \frac{5-s}{2\pi n^2})}{n^{1-s}} }[/math]
[math]\displaystyle{ B_0 := \frac{1}{8} \frac{s(s-1)}{2} \pi^{-(1-s)/2} \Gamma((1-s)/2) \exp( \frac{t}{16} \log^2 \frac{5-s}{2\pi} ) }[/math]
[math]\displaystyle{ s := \frac{1-y+ix}{2} }[/math]
[math]\displaystyle{ N := \lfloor \sqrt{\frac{\mathrm{Im} s}{2\pi}} \rfloor = \lfloor \sqrt{\frac{x}{4\pi}} \rfloor. }[/math]

There is also the refinement [math]\displaystyle{ A+B-C }[/math], where

[math]\displaystyle{ C:= \frac{1}{8} \exp(-\frac{t\pi^2}{64}) \frac{s(s-1)}{2} \pi^{-s/2} \Gamma(s/2) \frac{e^{-i\pi s} \Gamma(1-s)}{2\pi i} (2\pi i N)^{s-1} \Psi( \frac{s}{2\pi i N}-N ) }[/math]
[math]\displaystyle{ \Psi(\alpha) := 2\pi \frac{\cos \pi(\frac{1}{2} \alpha^2 - \alpha - \frac{\pi}{8})}{\cos(\pi \alpha)} \exp( \frac{i \pi}{2} \alpha^2 - \frac{5 \pi i}{8}). }[/math]

The first approximation was modified slightly to [math]\displaystyle{ A'+B' }[/math], where

[math]\displaystyle{ A' := \frac{2}{8} \pi^{-s/2} \sqrt{2\pi} \exp( (\frac{s+4}{2}-\frac{1}{2}) \log \frac{s+4}{2} - \frac{s+4}{2}) \sum_{n=1}^N \frac{\exp(\frac{t}{16} \log^2 \frac{s+4}{2\pi n^2})}{n^s} }[/math]
[math]\displaystyle{ B' := \frac{2}{8} \pi^{-(1-s)/2} \sqrt{2\pi} \exp( (\frac{5-s}{2}-\frac{1}{2}) \log \frac{5-s}{2} - \frac{5-s}{2}) \sum_{n=1}^N \frac{\exp(\frac{t}{16} \log^2 \frac{5-s}{2\pi n^2})}{n^{1-s}} }[/math]
[math]\displaystyle{ B'_0 := \frac{2}{8} \pi^{-(1-s)/2} \sqrt{2\pi} \exp( (\frac{5-s}{2}-\frac{1}{2}) \log \frac{5-s}{2} - \frac{5-s}{2}) \exp( \frac{t}{16} \log^2 \frac{5-s}{2\pi} ) }[/math]
[math]\displaystyle{ s := \frac{1-y+ix}{2} }[/math]
[math]\displaystyle{ N := \lfloor \sqrt{\frac{\mathrm{Im} s}{2\pi}} \rfloor = \lfloor \sqrt{\frac{x}{4\pi}} \rfloor. }[/math]

In Effective bounds on H_t - second approach, a more refined approximation [math]\displaystyle{ A^{eff} + B^{eff} }[/math] was introduced:

[math]\displaystyle{ A^{eff} := \frac{1}{8} \exp( \frac{t}{4} \alpha_1(\frac{1-y+ix}{2})^2 ) H_{0,1}(\frac{1-y+ix}{2}) \sum_{n=1}^N \frac{1}{n^{\frac{1-y+ix}{2} + \frac{t \alpha_1(\frac{1-y+ix}{2})}{2} - \frac{t}{4} \log n}} }[/math]
[math]\displaystyle{ B^{eff} := \frac{1}{8} \exp( \frac{t}{4} \overline{\alpha_1(\frac{1+y+ix}{2})}^2 ) \overline{H_{0,1}(\frac{1+y+ix}{2})} \sum_{n=1}^N \frac{1}{n^{\frac{1+y-ix}{2} + \frac{t \overline{\alpha_1(\frac{1+y+ix}{2})}}{2} - \frac{t}{4} \log n}} }[/math]
[math]\displaystyle{ B^{eff}_0 := \frac{1}{8} \exp( \frac{t}{4} \overline{\alpha_1(\frac{1+y+ix}{2})}^2 ) \overline{H_{0,1}(\frac{1+y+ix}{2})} }[/math]
[math]\displaystyle{ H_{0,1}(s) := \frac{s (s-1)}{2} \pi^{-s/2} \sqrt{2\pi} \exp( (\frac{s}{2} - \frac{1}{2}) \log \frac{s}{2} - \frac{s}{2} ) }[/math]
[math]\displaystyle{ \alpha_1(s) := \frac{1}{2s} + \frac{1}{s-1} + \frac{1}{2} \log \frac{s}{2\pi} }[/math]
[math]\displaystyle{ N := \lfloor \sqrt{ \frac{T'}{2\pi}} \rfloor }[/math]
[math]\displaystyle{ T' := \frac{x}{2} + \frac{\pi t}{8}. }[/math]

There is a refinement [math]\displaystyle{ A^{eff}+B^{eff}-C^{eff} }[/math], where

[math]\displaystyle{ C^{eff} := \frac{1}{8} \exp( \frac{t\pi^2}{64}) \frac{s'(s'-1)}{2} (-1)^N ( \pi^{-s'/2} \Gamma(s'/2) a^{-\sigma} C_0(p) U + \pi^{-(1-s')/2} \Gamma((1-s')/2) a^{-(1-\sigma)} \overline{C_0(p)} \overline{U}) }[/math]
[math]\displaystyle{ s' := \frac{1-y}{2} + iT' = \frac{1-y+ix}{2} + \frac{\pi i t}{8} }[/math]
[math]\displaystyle{ a := \sqrt{\frac{T'}{2\pi}} }[/math]
[math]\displaystyle{ p := 1 - 2(a-N) }[/math]
[math]\displaystyle{ \sigma := \mathrm{Re} s' = \frac{1-y}{2} }[/math]
[math]\displaystyle{ U := \exp( -i (\frac{T'}{2} \log \frac{T'}{2\pi} - \frac{T'}{2} - \frac{\pi}{8} )) }[/math]
[math]\displaystyle{ C_0(p) := \frac{ \exp( \pi i (p^2/2 + 3/8) )- i \sqrt{2} \cos(\pi i/2)}{2 \cos(\pi p)}. }[/math]

Finally, a simplified approximation is [math]\displaystyle{ A^{toy} + B^{toy} }[/math], where

[math]\displaystyle{ A^{toy} := B^{toy}_0 \exp(i ((\frac{x}{2} + \frac{\pi t}{8}) \log \frac{x}{4\pi} - \frac{x}{2} - \frac{\pi}{4} )) N^{-y} \sum_{n=1}^N \frac{1}{n^{\frac{1-y+ix}{2} + \frac{t}{4} \log \frac{N^2}{n} + \pi i t/8}} }[/math]
[math]\displaystyle{ B^{toy} := B^{toy}_0 \sum_{n=1}^N \frac{1}{n^{\frac{1+y-ix}{2} + \frac{t}{4} \log \frac{N^2}{n} - \pi i t/8}} }[/math]
[math]\displaystyle{ B^{toy}_0 := \frac{\sqrt{2}}{4} \pi^2 N^{\frac{7+y}{2}} \exp( i (-\frac{x}{4} \log \frac{x}{4\pi} + \frac{x}{4} + \frac{9-y}{8} \pi) + \frac{t}{16} (\log \frac{x}{4\pi} - \frac{\pi i}{2})^2 ) e^{-\pi x/8} }[/math]
[math]\displaystyle{ N := \lfloor \sqrt{\frac{x}{4\pi}} \rfloor. }[/math]

Here is a table comparing the size of the various main terms:

[math]\displaystyle{ x }[/math] [math]\displaystyle{ B_0 }[/math] [math]\displaystyle{ B'_0 }[/math] [math]\displaystyle{ B^{eff}_0 }[/math] [math]\displaystyle{ B^{toy}_0 }[/math]
[math]\displaystyle{ 10^3 }[/math] [math]\displaystyle{ (3.4405 + 3.5443 i) \times 10^{-167} }[/math] [math]\displaystyle{ (3.4204 + 3.5383 i) \times 10^{-167} }[/math] [math]\displaystyle{ (3.4426 + 3.5411 i) \times 10^{-167} }[/math] [math]\displaystyle{ (2.3040 + 2.3606 i) \times 10^{-167} }[/math]
[math]\displaystyle{ 10^4 }[/math] [math]\displaystyle{ (-1.1843 - 7.7882 i) \times 10^{-1700} }[/math] [math]\displaystyle{ (-1.1180 - 7.7888 i) \times 10^{-1700} }[/math] [math]\displaystyle{ (-1.1185 - 7.7879 i) \times 10^{-1700} }[/math] [math]\displaystyle{ (-1.1155 - 7.5753 i) \times 10^{-1700} }[/math]
[math]\displaystyle{ 10^5 }[/math] [math]\displaystyle{ (-7.6133 + 2.5065 i) * 10^{-17047} }[/math] [math]\displaystyle{ (-7.6134 + 2.5060 i) * 10^{-17047} }[/math] [math]\displaystyle{ (-7.6134 + 2.5059 i) * 10^{-17047} }[/math] [math]\displaystyle{ (-7.5483 + 2.4848 i) * 10^{-17047} }[/math]
[math]\displaystyle{ 10^6 }[/math] [math]\displaystyle{ (-3.1615 - 7.7093 i) * 10^{-170537} }[/math] [math]\displaystyle{ (-3.1676 - 7.7063 i) * 10^{-170537} }[/math] [math]\displaystyle{ (-3.1646 - 7.7079 i) * 10^{-170537} }[/math] [math]\displaystyle{ (-3.1590 - 7.6898 i) * 10^{-170537} }[/math]
[math]\displaystyle{ 10^7 }[/math] [math]\displaystyle{ (2.1676 - 9.6330 i) * 10^{-1705458} }[/math] [math]\displaystyle{ (2.1711 - 9.6236 i) * 10^{-1705458} }[/math] [math]\displaystyle{ (2.1571 - 9.6329 i) * 10^{-1705458} }[/math] [math]\displaystyle{ (2.2566 - 9.6000 i) * 10^{-1705458} }[/math]

Here some typical values of [math]\displaystyle{ B/B_0 }[/math] (note that [math]\displaystyle{ B/B_0 }[/math] and [math]\displaystyle{ B'/B'_0 }[/math] are identical):

[math]\displaystyle{ x }[/math] [math]\displaystyle{ B/B_0 }[/math] [math]\displaystyle{ B'/B'_0 }[/math] [math]\displaystyle{ B^{eff}/B^{eff}_0 }[/math] [math]\displaystyle{ B^{toy}/B^{toy}_0 }[/math]
[math]\displaystyle{ 10^3 }[/math] [math]\displaystyle{ 0.7722 + 0.6102 i }[/math] [math]\displaystyle{ 0.7722 + 0.6102 i }[/math] [math]\displaystyle{ 0.7733 + 0.6101 i }[/math] [math]\displaystyle{ 0.7626 + 0.6192 i }[/math]
[math]\displaystyle{ 10^4 }[/math] [math]\displaystyle{ 0.7434 - 0.0126 i }[/math] [math]\displaystyle{ 0.7434 - 0.0126 i }[/math] [math]\displaystyle{ 0.7434 - 0.0126 i }[/math] [math]\displaystyle{ 0.7434 - 0.0124 i }[/math]
[math]\displaystyle{ 10^5 }[/math] [math]\displaystyle{ 1.1218 - 0.3211 i }[/math] [math]\displaystyle{ 1.1218 - 0.3211 i }[/math] [math]\displaystyle{ 1.1218 - 0.3211 i }[/math] [math]\displaystyle{ 1.1219 - 0.3213 i }[/math]
[math]\displaystyle{ 10^6 }[/math] [math]\displaystyle{ 1.3956 - 0.5682 i }[/math] [math]\displaystyle{ 1.3956 - 0.5682 i }[/math] [math]\displaystyle{ 1.3955 - 0.5682 i }[/math] [math]\displaystyle{ 1.3956 - 0.5683 i }[/math]
[math]\displaystyle{ 10^7 }[/math] [math]\displaystyle{ 1.6400 + 0.0198 i }[/math] [math]\displaystyle{ 1.6400 + 0.0198 i }[/math] [math]\displaystyle{ 1.6401 + 0.0198 i }[/math] [math]\displaystyle{ 1.6400 - 0.0198 i }[/math]

Here some typical values of [math]\displaystyle{ A/B_0 }[/math], which seems to be about an order of magnitude smaller than [math]\displaystyle{ B/B_0 }[/math] in many cases:

[math]\displaystyle{ x }[/math] [math]\displaystyle{ A/B_0 }[/math] [math]\displaystyle{ A'/B'_0 }[/math] [math]\displaystyle{ A^{eff}/B^{eff}_0 }[/math] [math]\displaystyle{ A^{toy}/B^{toy}_0 }[/math]
[math]\displaystyle{ 10^3 }[/math] [math]\displaystyle{ -0.3856 - 0.0997 i }[/math] [math]\displaystyle{ -0.3857 - 0.0953 i }[/math] [math]\displaystyle{ -0.3854 - 0.1002 i }[/math] [math]\displaystyle{ -0.4036 - 0.0968 i }[/math]
[math]\displaystyle{ 10^4 }[/math] [math]\displaystyle{ -0.2199 - 0.0034 i }[/math] [math]\displaystyle{ -0.2199 - 0.0036 i }[/math] [math]\displaystyle{ -0.2199 - 0.0033 i }[/math] [math]\displaystyle{ -0.2208 - 0.0033 i }[/math]
[math]\displaystyle{ 10^5 }[/math] [math]\displaystyle{ 0.1543 + 0.1660 i }[/math] [math]\displaystyle{ 0.1543 + 0.1660 i }[/math] [math]\displaystyle{ 0.1543 + 0.1660 i }[/math] [math]\displaystyle{ 0.1544 + 0.1663 i }[/math]
[math]\displaystyle{ 10^6 }[/math] [math]\displaystyle{ -0.1013 - 0.1887 i }[/math] [math]\displaystyle{ -0.1010 - 0.1889 i }[/math] [math]\displaystyle{ -0.1011 - 0.1890 i }[/math] [math]\displaystyle{ -0.1012 - 0.1888 i }[/math]
[math]\displaystyle{ 10^7 }[/math] [math]\displaystyle{ -0.1018 + 0.1135 i }[/math] [math]\displaystyle{ -0.1022 + 0.1133 i }[/math] [math]\displaystyle{ -0.1025 + 0.1128 i }[/math] [math]\displaystyle{ -0.0986 + 0.1163 i }[/math]

Here some typical values of [math]\displaystyle{ C/B_0 }[/math], which is significantly smaller than either [math]\displaystyle{ A/B_0 }[/math] or [math]\displaystyle{ B/B_0 }[/math]:


[math]\displaystyle{ x }[/math] [math]\displaystyle{ C/B_0 }[/math] [math]\displaystyle{ C^{eff}/B^{eff}_0 }[/math]
[math]\displaystyle{ 10^3 }[/math] [math]\displaystyle{ -0.1183 + 0.0697i }[/math] [math]\displaystyle{ -0.0581 + 0.0823 i }[/math]
[math]\displaystyle{ 10^4 }[/math] [math]\displaystyle{ -0.0001 - 0.0184 i }[/math] [math]\displaystyle{ -0.0001 - 0.0172 i }[/math]
[math]\displaystyle{ 10^5 }[/math] [math]\displaystyle{ -0.0033 - 0.0005i }[/math] [math]\displaystyle{ -0.0031 - 0.0005i }[/math]
[math]\displaystyle{ 10^6 }[/math] [math]\displaystyle{ -0.0001 - 0.0006 i }[/math] [math]\displaystyle{ -0.0001 - 0.0006 i }[/math]
[math]\displaystyle{ 10^7 }[/math] [math]\displaystyle{ -0.0000 - 0.0001 i }[/math] [math]\displaystyle{ -0.0000 - 0.0001 i }[/math]

Controlling |A+B|/|B_0|

Some numerical data on [math]\displaystyle{ |A+B/B_0| }[/math] source and also [math]\displaystyle{ \mathrm{Re} \frac{A+B}{B_0} }[/math] source, using a step size of 1 for [math]\displaystyle{ x }[/math], suggesting that this ratio tends to oscillate roughly between 0.5 and 3 for medium values of [math]\displaystyle{ x }[/math]:

range of [math]\displaystyle{ x }[/math] minimum value max value average value standard deviation min real part max real part
0-1000 0.179 4.074 1.219 0.782 -0.09 4.06
1000-2000 0.352 4.403 1.164 0.712 0.02 4.43
2000-3000 0.352 4.050 1.145 0.671 0.15 3.99
3000-4000 0.338 4.174 1.134 0.640 0.34 4.48
4000-5000 0.386 4.491 1.128 0.615 0.33 4.33
5000-6000 0.377 4.327 1.120 0.599 0.377 4.327
[math]\displaystyle{ 1-10^5 }[/math] 0.179 4.491 1.077 0.455 -0.09 4.48
[math]\displaystyle{ 10^5-2 \times 10^5 }[/math] 0.488 3.339 1.053 0.361 0.48 3.32
[math]\displaystyle{ 2 \times 10^5-3 \times 10^5 }[/math] 0.508 3.049 1.047 0.335 0.50 3.00
[math]\displaystyle{ 3 \times 10^5-4 \times 10^5 }[/math] 0.517 2.989 1.043 0.321 0.52 2.97
[math]\displaystyle{ 4 \times 10^5-5 \times 10^5 }[/math] 0.535 2.826 1.041 0.310 0.53 2.82
[math]\displaystyle{ 5 \times 10^5-6 \times 10^5 }[/math] 0.529 2.757 1.039 0.303 0.53 2.75
[math]\displaystyle{ 6 \times 10^5-7 \times 10^5 }[/math] 0.548 2.728 1.038 0.296 0.55 2.72

Here is a computation on the magnitude [math]\displaystyle{ |\frac{d}{dx}(B'/B'_0)| }[/math] of the derivative of [math]\displaystyle{ B'/B'_0 }[/math], sampled at steps of 1 in [math]\displaystyle{ x }[/math] source, together with a crude upper bound coming from the triangle inequality source, to give some indication of the oscillation:

range of [math]\displaystyle{ T=x/2 }[/math] max value average value standard deviation triangle inequality bound
0-1000 1.04 0.33 0.19
1000-2000 1.25 0.39 0.24
2000-3000 1.31 0.39 0.25
3000-4000 1.39 0.38 0.27
4000-5000 1.64 0.37 0.26
5000-6000 1.60 0.36 0.27
6000-7000 1.61 0.36 0.26
7000-8000 1.55 0.36 0.27
8000-9000 1.65 0.34 0.26
9000-10000 1.47 0.34 0.26
[math]\displaystyle{ 1-10^5 }[/math] 1.78 0.28 0.23 2.341
[math]\displaystyle{ 10^5-2 \times 10^5 }[/math] 1.66 0.22 0.18 2.299
[math]\displaystyle{ 2 \times 10^5-3 \times 10^5 }[/math] 1.55 0.20 0.17 2.195
[math]\displaystyle{ 3 \times 10^5-4 \times 10^5 }[/math] 1.53 0.19 0.16 2.109
[math]\displaystyle{ 4 \times 10^5-5 \times 10^5 }[/math] 1.31 0.18 0.15 2.039
[math]\displaystyle{ 5 \times 10^5-6 \times 10^5 }[/math] 1.34 0.18 0.14
[math]\displaystyle{ 6 \times 10^5-7 \times 10^5 }[/math] 1.33 0.17 0.14


In the toy case, we have

[math]\displaystyle{ \frac{|A^{toy}+B^{toy}|}{|B^{toy}_0|} \geq |\sum_{n=1}^N \frac{b_n}{n^s}| - |\sum_{n=1}^N \frac{a_n}{n^s}| }[/math]

where [math]\displaystyle{ b_n := \exp( \frac{t}{4} \log^2 n) }[/math], [math]\displaystyle{ a_n := (n/N)^{y} b_n }[/math], and [math]\displaystyle{ s := \frac{1+y+ix}{2} + \frac{t}{2} \log N + \frac{\pi i t}{8} }[/math]. For the effective approximation one has

[math]\displaystyle{ \frac{|A^{eff}+B^{eff}|}{|B^{eff}_0|} \geq |\sum_{n=1}^N \frac{b_n}{n^s}| - |\sum_{n=1}^N \frac{a_n}{n^s}| \quad (2.1) }[/math]

where now [math]\displaystyle{ b_n := \exp( \frac{t}{4} \log^2 n) }[/math], [math]\displaystyle{ s := \frac{1+y+ix}{2} + \frac{t}{2} \alpha_1(\frac{1+y+ix}{2}) }[/math], and

[math]\displaystyle{ a_n := |\frac{\exp( \frac{t}{4} \alpha_1(\frac{1-y+ix}{2})^2 ) H_{0,1}( \frac{1-y+ix}{2} )}{ \exp( \frac{t}{4} \alpha_1(\frac{1+y+ix}{2})^2 ) H_{0,1}( \frac{1+y+ix}{2} ) }| n^{y - \frac{t}{2} \alpha_1(\frac{1-y+ix}{2}) + \frac{t}{2} \alpha_1(\frac{1+y+ix}{2}) )} b_n. }[/math]

It is thus of interest to obtain lower bounds for expressions of the form

[math]\displaystyle{ |\sum_{n=1}^N \frac{b_n}{n^s}| - |\sum_{n=1}^N \frac{a_n}{n^s}| }[/math]

in situations where [math]\displaystyle{ b_1=1 }[/math] is expected to be a dominant term.

From the triangle inequality one obtains the lower bound

[math]\displaystyle{ |\sum_{n=1}^N \frac{b_n}{n^s}| - |\sum_{n=1}^N \frac{a_n}{n^s}| \geq 1 - |a_1| - \sum_{n=2}^N \frac{|a_n|+|b_n|}{n^\sigma} }[/math]

where [math]\displaystyle{ \sigma := \frac{1+y}{2} + \frac{t}{2} \log N }[/math] is the real part of [math]\displaystyle{ s }[/math]. There is a refinement:

Lemma 1 If [math]\displaystyle{ a_n,b_n }[/math] are real coefficients with [math]\displaystyle{ b_1 = 1 }[/math] and [math]\displaystyle{ 0 \leq a_1 \lt 1 }[/math] we have

[math]\displaystyle{ |\sum_{n=1}^N \frac{b_n}{n^s}| - |\sum_{n=1}^N \frac{a_n}{n^s}| \geq 1 - a_1 - \sum_{n=2}^N \frac{\max( |b_n-a_n|, \frac{1-a_1}{1+a_1} |b_n+a_n|)}{n^\sigma}. }[/math]

Proof By a continuity argument we may assume without loss of generality that the left-hand side is positive, then we may write it as

[math]\displaystyle{ |\sum_{n=1}^N \frac{b_n - e^{i\theta} a_n}{n^s}| }[/math]

for some phase [math]\displaystyle{ \theta }[/math]. By the triangle inequality, this is at least

[math]\displaystyle{ |1 - e^{i\theta} a_1| - \sum_{n=2}^N \frac{|b_n - e^{i\theta} a_n|}{n^\sigma}. }[/math]

We factor out [math]\displaystyle{ |1 - e^{i\theta} a_1| }[/math], which is at least [math]\displaystyle{ 1-a_1 }[/math], to obtain the lower bound

[math]\displaystyle{ (1-a_1) (1 - \sum_{n=2}^N \frac{|b_n - e^{i\theta} a_n| / |1 - e^{i\theta} a_1|}{n^\sigma}). }[/math]

By the cosine rule, we have

[math]\displaystyle{ (|b_n - e^{i\theta} a_n| / |1 - e^{i\theta} a_1|)^2 = \frac{b_n^2 + a_n^2 - 2 a_n b_n \cos \theta}{1 + a_1^2 -2 a_1 \cos \theta}. }[/math]

This is a fractional linear function of [math]\displaystyle{ \cos \theta }[/math] with no poles in the range [math]\displaystyle{ [-1,1] }[/math] of [math]\displaystyle{ \cos \theta }[/math]. Thus this function is monotone on this range and attains its maximum at either [math]\displaystyle{ \cos \theta=+1 }[/math] or [math]\displaystyle{ \cos \theta = -1 }[/math]. We conclude that

[math]\displaystyle{ \frac{|b_n - e^{i\theta} a_n|}{|1 - e^{i\theta} a_1|} \leq \max( \frac{|b_n-a_n|}{1-a_1}, \frac{|b_n+a_n|}{1+a_1} ) }[/math]

and the claim follows.

We can also mollify the [math]\displaystyle{ a_n,b_n }[/math]:

Lemma 2 If [math]\displaystyle{ \lambda_1,\dots,\lambda_D }[/math] are complex numbers, then

[math]\displaystyle{ |\sum_{d=1}^D \frac{\lambda_d}{d^s}| (|\sum_{n=1}^N \frac{b_n}{n^s}| - |\sum_{n=1}^N \frac{a_n}{n^s}|) = ( |\sum_{n=1}^{DN} \frac{\tilde b_n}{n^s}| - |\sum_{n=1}^{DN} \frac{\tilde a_n}{n^s}| ) }[/math]

where

[math]\displaystyle{ \tilde a_n := \sum_{d=1}^D 1_{n \leq dN} 1_{d|n} \lambda_d a_{n/d} }[/math]
[math]\displaystyle{ \tilde b_n := \sum_{d=1}^D 1_{n \leq dN} 1_{d|n} \lambda_d b_{n/d} }[/math]

Proof This is immediate from the Dirichlet convolution identities

[math]\displaystyle{ (\sum_{d=1}^D \frac{\lambda_d}{d^s}) \sum_{n=1}^N \frac{a_n}{n^s} = \sum_{n=1}^N \frac{\tilde a_n}{n^s} }[/math]

and

[math]\displaystyle{ (\sum_{d=1}^D \frac{\lambda_d}{d^s}) \sum_{n=1}^N \frac{b_n}{n^s} = \sum_{n=1}^N \frac{\tilde b_n}{n^s}. }[/math]

[math]\displaystyle{ \Box }[/math]

Combining the two lemmas, we see for instance that we can show [math]\displaystyle{ |\sum_{n=1}^N \frac{b_n}{n^s}| - |\sum_{n=1}^N \frac{a_n}{n^s}| \gt 0 }[/math] whenever can find [math]\displaystyle{ \lambda_1,\dots,\lambda_D }[/math] with [math]\displaystyle{ \lambda_1=1 }[/math] and

[math]\displaystyle{ \sum_{n=2}^N \frac{\max( \frac{|\tilde b_n-\tilde a_n|}{1-a_1}, \frac{|\tilde b_n+ \tilde a_n|}{1+a_1})}{n^\sigma} \lt 1. }[/math]

A usable choice of mollifier seems to be the Euler products

[math]\displaystyle{ \sum_{d=1}^D \frac{\lambda_d}{d^s} := \prod_{p \leq P} (1 - \frac{b_p}{p^s}) }[/math]

which are designed to kill off the first few [math]\displaystyle{ \tilde b_n }[/math] coefficients.


Analysing the toy model

With regards to the toy problem of showing [math]\displaystyle{ A^{toy}+B^{toy} }[/math] does not vanish, here are the least values of [math]\displaystyle{ N }[/math] for which this method works source source source source:

[math]\displaystyle{ P }[/math] in Euler product [math]\displaystyle{ N }[/math] using triangle inequality [math]\displaystyle{ N }[/math] using Lemma 1
1 1391 1080
2 478 341
3 322 220
5 282 192
7 180
11 176

Dropping the [math]\displaystyle{ \lambda_6 }[/math] term from the [math]\displaystyle{ P=3 }[/math] Euler factor worsens the 220 threshold slightly to 235 source.

Analysing the effective model

The differences between the toy model and the effective model are:

  • The real part [math]\displaystyle{ \sigma }[/math] of [math]\displaystyle{ s }[/math] is now [math]\displaystyle{ \frac{1+y}{2} + \frac{t}{2} \mathrm{Re} \alpha_1(\frac{1+y+ix}{2}) }[/math] rather than [math]\displaystyle{ \frac{1+y}{2} + \frac{t}{2} \log N }[/math]. (The imaginary part of [math]\displaystyle{ s }[/math] also changes somewhat.)
  • The coefficient [math]\displaystyle{ a_n }[/math] is now given by
[math]\displaystyle{ a_n = \lambda n^{y + \frac{t}{2} (\alpha_1(\frac{1+y+ix}{2}) - \alpha_1(\frac{1-y+ix}{2}))} b_n }[/math]

rather than [math]\displaystyle{ a_n = N^{-y} n^y b_n }[/math], where

[math]\displaystyle{ \lambda := |\frac{\exp( \frac{t}{4} \alpha_1(\frac{1-y+ix}{2})^2 H_{0,1}( \frac{1-y+ix}{2})}{\exp( \frac{t}{4} \alpha_1(\frac{1-y+ix}{2})^2 H_{0,1}( \frac{1-y+ix}{2})}|. }[/math]

Two complications arise here compared with the toy model: firstly, [math]\displaystyle{ \sigma,a_n }[/math] now depend on [math]\displaystyle{ x }[/math] and not just on [math]\displaystyle{ N }[/math], and secondly the [math]\displaystyle{ a_n }[/math] are not quite real-valued making it more difficult to apply Lemma 1.

However we have good estimates for [math]\displaystyle{ \sigma,a_n }[/math] that depend only on [math]\displaystyle{ N }[/math]. Note that

[math]\displaystyle{ 2\pi N^2 \leq T' \lt 2\pi (N+1)^2 }[/math]

and hence

[math]\displaystyle{ x_N \leq x \lt x_{N+1} }[/math]

where

[math]\displaystyle{ x_N := 4\pi N^2 - \frac{\pi t}{4}. }[/math]

To control [math]\displaystyle{ \sigma }[/math], it suffices to obtain lower bounds because our criteria (both the triangle inequality and Lemma 1) become harder to satisfy when [math]\displaystyle{ \sigma }[/math] decreases. We compute

[math]\displaystyle{ \sigma = \frac{1+y}{2} + \frac{t}{2} \mathrm{Re}(\frac{1}{1+y+ix} + \frac{2}{-1+y+ix} + \frac{1}{2} \log \frac{1+y+ix}{4\pi}) }[/math]
[math]\displaystyle{ = \frac{1+y}{2} + \frac{t}{2} (\frac{1+y}{(1+y)^2+x^2} + \frac{-2+2y}{(-1+y)^2+x^2} + \frac{1}{2} \log \frac{|1+y+ix|}{4\pi}) }[/math]
[math]\displaystyle{ \geq \frac{1+y}{2} + \frac{t}{2} (\frac{1+y}{(-1+y)^2+x^2} + \frac{-2+2y}{(-1+y)^2+x^2} + \frac{1}{2} \log \frac{x}{4\pi}) }[/math]
[math]\displaystyle{ \geq \frac{1+y}{2} + \frac{t}{2} (\frac{3y-1}{(-1+y)^2+x^2} + \log N) }[/math]
[math]\displaystyle{ \geq \frac{1+y}{2} + \frac{t}{2} \log N }[/math]

assuming that [math]\displaystyle{ y \geq 1/3 }[/math]. Hence we can actually just use the same value of [math]\displaystyle{ \sigma }[/math] as in the toy case.

Next we control [math]\displaystyle{ \lambda }[/math]. Note that we can increase [math]\displaystyle{ \lambda }[/math] (thus multiplying [math]\displaystyle{ \sum_{n=1}^N \frac{a_n}{n^s} }[/math] by a quantity greater than 1) without affecting (2.1), so we just need upper bounds on [math]\displaystyle{ \lambda }[/math]. We may factor

[math]\displaystyle{ \lambda = \exp( \frac{t}{4} \mathrm{Re} (\alpha_1(\frac{1-y+ix}{2})^2 - \alpha_1(\frac{1+y+ix}{2})^2) + \mathrm{Re}( f(\frac{1-y+ix}{2}) - f(\frac{1+y+ix}{2} ) ) }[/math]

where

[math]\displaystyle{ f(s) := -\frac{s}{2} \log \pi + (\frac{s}{2} - \frac{1}{2}) \log \frac{s}{2} - \frac{s}{2}. }[/math]

By the mean value theorem, we have

[math]\displaystyle{ \mathrm{Re} (\alpha_1(\frac{1-y+ix}{2})^2 - \alpha_1(\frac{1+y+ix}{2})^2) = -2 y \alpha_1(s') \alpha'_1(s') }[/math]

for some [math]\displaystyle{ s_1 }[/math] between [math]\displaystyle{ \frac{1-y+ix}{2} }[/math] and [math]\displaystyle{ \frac{1+iy}{2} }[/math]. We have

[math]\displaystyle{ \alpha_1(s_1) = \frac{1}{2s_1} + \frac{1}{s_1-1} + \frac{1}{2} \log \frac{s_1}{2\pi} }[/math]
[math]\displaystyle{ = O_{\leq}(\frac{1}{x}) + O_{\leq}(\frac{1}{x/2}) + \frac{1}{2} \log \frac{|s_1|}{2\pi} + O_{\leq}(\frac{\pi}{4}) }[/math]
[math]\displaystyle{ = O_{\leq}( \frac{\pi}{4} + \frac{3}{x_N}) + \frac{1}{2} O_{\leq}^{\mathbf{R}}( \log \frac{|1+y+ix_{N+1}|}{4\pi} ) }[/math]

and

[math]\displaystyle{ \alpha'_1(s_1) = -\frac{1}{2s_1^2} + \frac{1}{(s_1-1)^2} + \frac{1}{2s_1} }[/math]
[math]\displaystyle{ = O_{\leq}(\frac{1}{x^2/2}) + O_{\leq}(\frac{1}{x^2/4}) + \frac{1}{2s_1} }[/math]
[math]\displaystyle{ = O_{\leq}(\frac{6}{x_N^2}) + \frac{1}{2s_1} }[/math]
[math]\displaystyle{ = O_{\leq}(\frac{6}{x_N^2}) + O_{\leq}( \frac{1}{x_N} ). }[/math]

Thus one has

[math]\displaystyle{ \mathrm{Re} (\alpha_1(\frac{1-y+ix}{2})^2 - \alpha_1(\frac{1+y+ix}{2})^2) = 2y O_{\leq}( (\frac{\pi}{4} + \frac{3}{x_N}) (\frac{1}{x_N} + \frac{6}{x_N^2}) ) }[/math]
[math]\displaystyle{ + 2y O_{\leq}( \log \frac{|1+y+ix_{N+1}|}{4\pi} (\frac{6}{x_N^2} + |\mathrm{Re} \frac{1}{2s'}|) ) }[/math]

Now we have

[math]\displaystyle{ \mathrm{Re} \frac{1}{2s'} = \frac{\mathrm{Re}(s')}{2|s'|^2} }[/math]
[math]\displaystyle{ \leq \frac{1+y}{x^2} }[/math]
[math]\displaystyle{ \leq \frac{1+y}{x_N^2}; }[/math]

also

[math]\displaystyle{ (\frac{\pi}{4} + \frac{3}{x_N}) (\frac{1}{x_N} + \frac{6}{x_N^2}) \leq \frac{\pi}{4} (1 + \frac{12/\pi}{x_N}) \frac{1}{x_N-6} }[/math]
[math]\displaystyle{ \leq \frac{\pi}{4} ( \frac{1}{x_N-6} + \frac{12/\pi}{(x_N-6)^2} ) }[/math]
[math]\displaystyle{ \leq \frac{\pi}{4} \frac{1}{x_N - 6 - 12/\pi}. }[/math]

We conclude that

[math]\displaystyle{ \mathrm{Re} (\alpha_1(\frac{1-y+ix}{2})^2 - \alpha_1(\frac{1+y+ix}{2})^2) = O_{\leq}(\frac{\pi y}{2 (x_N - 6 - 12/\pi)} + \frac{2y(7+y)}{x_N^2} \log \frac{|1+y+ix_{N+1}|}{4\pi}). }[/math]

In a similar vein, from the mean value theorem we have

[math]\displaystyle{ \mathrm{Re}( f(\frac{1-y+ix}{2}) - f(\frac{1+y+ix}{2} ) = -y \mathrm{Re} f'(s_2) }[/math]

for some [math]\displaystyle{ s_2 }[/math] between [math]\displaystyle{ \frac{1-y+ix}{2} }[/math] and [math]\displaystyle{ \frac{1+y+ix}{2} }[/math]. We have

[math]\displaystyle{ \mathrm{Re} f'(s_2) = -\frac{1}{2} \log \pi + \frac{1}{2} \log \frac{|s_2|}{2} - \mathrm{Re} \frac{1}{2s_2} }[/math]
[math]\displaystyle{ = \frac{1}{2} \log \frac{|s_2|}{2\pi} + O_{\leq}(\frac{\mathrm{Re}(s_2)}{2|s_2|^2}) }[/math]
[math]\displaystyle{ \geq \log N + O_{\leq}(\frac{1+y}{x^2}) }[/math]
[math]\displaystyle{ \geq \log N + O_{\leq}(\frac{1+y}{x_N^2}) }[/math]

and thus

[math]\displaystyle{ \lambda \leq N^{-y} \exp( \frac{\pi y}{2 (x_N - 6 - 12/\pi)} + \frac{2y(7+y)}{x_N^2} \log \frac{|1+y+ix_{N+1}|}{4\pi} + \frac{y(1+y)}{x_N^2} ) }[/math]
[math]\displaystyle{ \leq e^\delta N^{-y} }[/math]

where

[math]\displaystyle{ \delta := \frac{\pi y}{2 (x_N - 6 - \frac{14+2y}{\pi})} + \frac{2y(7+y)}{x_N^2} \log \frac{|1+y+ix_{N+1}|}{4\pi} }[/math]

Asymptotically we have

[math]\displaystyle{ \delta = \frac{\pi y}{2 x_N} + O( \frac{\log x_N}{x_N^2} ) = O( \frac{1}{x_N} ). }[/math]

Now we control [math]\displaystyle{ \alpha_1(\frac{1+y+ix}{2}) - \alpha_1(\frac{1-y+ix}{2}) }[/math]. By the mean-value theorem we have

[math]\displaystyle{ \alpha_1(\frac{1+y+ix}{2}) - \alpha_1(\frac{1-y+ix}{2}) = O_{\leq}( y |\alpha'_1(s_3)|) }[/math]

for some [math]\displaystyle{ s_3 }[/math] between [math]\displaystyle{ \frac{1+y+ix}{2} }[/math] and [math]\displaystyle{ \frac{1-y+ix}{2} }[/math]. As before we have

[math]\displaystyle{ \alpha'_1(s_3) = -\frac{1}{2s_3^2} - \frac{1}{(s_3-1)^2} + \frac{1}{2s_3} }[/math]
[math]\displaystyle{ = O_{\leq}( \frac{1}{x^2/2} + \frac{1}{x^2/4} + \frac{1}{x} ) }[/math]
[math]\displaystyle{ = O_{\leq}( \frac{1}{x_N} + \frac{6}{x_N^2} ) }[/math]
[math]\displaystyle{ = O_{\leq}( \frac{1}{x_N-6} ). }[/math]

We conclude that (after replacing [math]\displaystyle{ \lambda }[/math] with [math]\displaystyle{ e^\delta N^{-y} }[/math])

[math]\displaystyle{ a_n = (n/N)^y \exp( \delta + O_{\leq}( \frac{t y \log n}{2(x_N-6)} ) ) b_n. }[/math]

The triangle inequality argument will thus give [math]\displaystyle{ A^{eff}+B^{eff} }[/math] non-zero as long as

[math]\displaystyle{ \sum_{n=1}^N (1 + (n/N)^y \exp( \delta + \frac{t y \log n}{2(x_N-6)} ) ) \frac{b_n}{n^\sigma} \lt 2. }[/math]

The situation with using Lemma 1 is a bit more complicated because [math]\displaystyle{ a_n }[/math] is not quite real. We can write [math]\displaystyle{ a_n = e^\delta a_n^{toy} + O_{\leq}( e_n ) }[/math] where

[math]\displaystyle{ a_n^{toy} := (n/N)^y b_n }[/math]

and

[math]\displaystyle{ e_n := e^\delta (n/N)^y (\exp( \frac{t y \log n}{2(x_N-6)} ) - 1) b_n }[/math]

and then by Lemma 1 and the triangle inequality we can make [math]\displaystyle{ A^{eff}+B^{eff} }[/math] non-zero as long as

[math]\displaystyle{ a_1^{toy} + \sum_{n=2}^N \frac{\max( |b_n-a_n^{toy}|, \frac{1-a_1^{toy}}{1+a_1^{toy}} |b_n + a_n^{toy}|}{n^\sigma} + \sum_{n=1}^N \frac{e_n}{n^\sigma} \lt 1. }[/math]

Controlling |H_t-A-B|/|B_0|

As computed in Effective bounds on H_t - second approach, there is an effective bound

[math]\displaystyle{ |H_{eff} - A^{eff} - B^{eff}| \leq E_1 + E_2 + E_3 }[/math]

where

[math]\displaystyle{ H_{0,1}(s) := \frac{s (s-1)}{2} \pi^{-s/2} \sqrt{2\pi} \exp( (\frac{s}{2} - \frac{1}{2}) \log \frac{s}{2} - \frac{s}{2} ) }[/math]
[math]\displaystyle{ E_1 := \frac{1}{8 (T - 3.33)} \exp( \frac{t}{4} \mathrm{Re} \alpha_1(\frac{1-y+ix}{2})^2 ) |H_{0,1}(\frac{1-y+ix}{2})| \epsilon'(\frac{1-y+ix}{2}) }[/math]
[math]\displaystyle{ E_2 := \frac{1}{8 (T - 3.33)} \exp( \frac{t}{4} \mathrm{Re} \alpha_1(\frac{1+y+ix}{2})^2 ) |H_{0,1}(\frac{1+y+ix}{2})| \epsilon'(\frac{1+y+ix}{2}) }[/math]
[math]\displaystyle{ E_3 := \frac{1}{8} \sqrt{\pi} \exp( -\frac{t \pi^2}{64} ) (T')^{3/2} e^{-\pi T/4} \int_{-\infty}^\infty v(\sigma) w(\sigma) f(\sigma)\ d\sigma }[/math]
[math]\displaystyle{ \epsilon'(s) := \frac{1}{2} \sum_{n=1}^N \frac{1}{n^{\mathrm{Re}(s) + \frac{t \mathrm{Re} \alpha_1(s)}{2} - \frac{t}{4} \log n}} \exp(\frac{1}{2(T-3.33)} (\frac{t^2}{4} |\alpha_1(s) - \log n|^2 + \frac{1}{3} + t)) (\frac{t^2}{4} |\alpha_1(s) - \log n|^2 + \frac{1}{3} + t ) }[/math]
[math]\displaystyle{ f(\sigma) := \frac{1}{2\sqrt{\pi t}} (e^{-(\sigma-(1-y)/2)^2/t} + e^{-(\sigma-(1+y)/2)^2/t}) \quad (4.1) }[/math]
[math]\displaystyle{ w(\sigma) := (1 + \frac{\sigma^2}{(T'_0)^2})^{1/2} (1 + \frac{(1-\sigma)^2}{(T'_0)^2})^{1/2} \exp( \frac{(\sigma-1)_+}{4} \log (1 + \frac{\sigma^2}{(T'_0)^2}) + (\frac{T'_0}{2} \arctan \frac{\sigma}{T'_0} - \frac{\sigma}{2}) 1_{\sigma \lt 0} + \frac{1}{12(T'_0 - 0.33)}) }[/math]
[math]\displaystyle{ v(\sigma) := 1 + (0.400 \frac{9^\sigma}{a_0} + 0.346 \frac{2^{3\sigma/2}}{a_0^2}) 1_{\sigma \geq 0} + (9/10)^{\lceil -\sigma \rceil} \sum_{1 \leq k \leq 4-\sigma} (1.1)^k \frac{\Gamma(k/2)}{a_0^k} 1_{\sigma \lt 0} }[/math]
[math]\displaystyle{ a_0 := \sqrt{\frac{T'_0}{2\pi}} }[/math]
[math]\displaystyle{ \alpha_1(s) := \frac{1}{2s} + \frac{1}{s-1} + \frac{1}{2} \log \frac{s}{2\pi} }[/math]
[math]\displaystyle{ N := \lfloor \sqrt{ \frac{T'}{2\pi}} \rfloor }[/math]
[math]\displaystyle{ T' := \frac{x}{2} + \frac{\pi t}{8} }[/math]
[math]\displaystyle{ T'_0 := T_0 + \frac{\pi t}{8} }[/math]


Comparison between [math]\displaystyle{ H^{eff} = A^{eff}+B^{eff} }[/math], [math]\displaystyle{ A'+B' }[/math], and the effective error bound [math]\displaystyle{ E_1+E_2+E_3 }[/math] on [math]\displaystyle{ H - H^{eff} }[/math] at some points of [math]\displaystyle{ x }[/math] source:

[math]\displaystyle{ x }[/math] [math]\displaystyle{ |H^{eff}/B'_0| }[/math] [math]\displaystyle{ |(A'+B')/B'_0| }[/math] [math]\displaystyle{ |(H^{eff}-(A'+B'))/B'_0| }[/math] [math]\displaystyle{ |(H^{eff}-(A'+B'))/B'_0| + |(E_1+E_2+E_3)/B'_0| }[/math]
10000 0.52 0.52 0.0006 0.039
12131 1.28 1.28 0.0004 0.033
15256 0.97 0.97 0.0003 0.027
18432 0.68 0.68 0.0003 0.023
20567 0.98 0.98 0.0004 0.022
30654 1.93 1.93 0.0004 0.016

The [math]\displaystyle{ E_3 }[/math] error dominates the other two source:

[math]\displaystyle{ x }[/math] [math]\displaystyle{ \frac{E_3}{E_1+E_2} }[/math]
10000 9.11
15000 14.97
20000 19.26
50000 32.39
100000 42.99
[math]\displaystyle{ 10^7 }[/math] 87.23

[math]\displaystyle{ A+B-C }[/math] is a good approximation to [math]\displaystyle{ H_t }[/math] source source

[math]\displaystyle{ x }[/math] [math]\displaystyle{ \frac{|H_t-(A+B-C)|}{|B_0|} }[/math] [math]\displaystyle{ \frac{|H_t-(A^{eff}+B^{eff}-C^{eff})|}{|B_0^{eff}|} }[/math]
160 0.06993270565802375041 0.009155667752
320 0.006716674125965016299 0.0005529962481
480 0.005332893070605698501 0.0004966282128
640 0.003363431256036816251 0.0004482768972
800 0.1548144749150572349 0.002686105466
960 0.03009229958121352990 0.001270168744
1120 0.004507664238680722472 0.0009957229500
1280 0.002283591962997851167 0.0007024411378
1440 0.01553727684468691873 0.0007000473085
1600 0.001778051951547709718 0.0004882487218
1760 0.02763769444052338578 0.0002518910919
1920 0.002108779890256530964 0.0008378989413
2080 0.02746770886040058927 0.0004924765754
2240 0.001567020041379128455 0.0001171320991
2400 0.01801417530687959747 0.0002443802551
2560 0.001359561117436848149 0.0004569058755
2720 0.008503327577240081269 0.0006355966221
2880 0.001089253262122934826 0.0008864917365
3040 0.003004181560093288747 0.00004326840265
3200 0.02931455383125538672 0.0003598521453

A closer look at the "spike" in error near [math]\displaystyle{ x=800 \approx 256 \pi \approx 804 }[/math]:

[math]\displaystyle{ x }[/math] [math]\displaystyle{ \frac{|H_t-(A+B-C)|}{|B_0|} }[/math]
622.035345 0.003667321
631.460123 0.004268055
640.884901 0.003284407
650.309679 0.004453589
659.734457 0.003872174
669.159235 0.005048162
678.584013 0.005009254
688.008791 0.007418686
697.433569 0.007464541
706.858347 0.010692337
716.283125 0.012938629
725.707903 0.017830524
735.132681 0.022428596
744.557459 0.030907876
753.982237 0.040060298
763.407015 0.053652069
772.831793 0.071092824
782.256571 0.094081856
791.681349 0.123108726
801.106127 0.159299234
810.530905 0.002870724

In practice [math]\displaystyle{ E_1/B^{eff}_0 }[/math] is smaller than [math]\displaystyle{ E_2/B^{eff}_0 }[/math], which is mostly dominated by the first term in the sum which is close to [math]\displaystyle{ \frac{t^2}{16 x} \log^2 \frac{x}{4\pi} }[/math]:

[math]\displaystyle{ x }[/math] [math]\displaystyle{ E_1 / B^{eff}_0 }[/math] [math]\displaystyle{ E_2 / B^{eff}_0 }[/math] [math]\displaystyle{ \frac{t^2}{16x} \log^2 \frac{x}{4\pi} }[/math]
10^3 [math]\displaystyle{ 1.389 \times 10^{-3} }[/math] [math]\displaystyle{ 2.341 \times 10^{-3} }[/math] [math]\displaystyle{ 1.915 \times 10^{-4} }[/math]
10^4 [math]\displaystyle{ 1.438 \times 10^{-4} }[/math] [math]\displaystyle{ 3.156 \times 10^{-4} }[/math] [math]\displaystyle{ 4.461 \times 10^{-5} }[/math]
10^5 [math]\displaystyle{ 1.118 \times 10^{-5} }[/math] [math]\displaystyle{ 3.574 \times 10^{-5} }[/math] [math]\displaystyle{ 8.067 \times 10^{-6} }[/math]
10^6 [math]\displaystyle{ 7.328 \times 10^{-7} }[/math] [math]\displaystyle{ 3.850 \times 10^{-6} }[/math] [math]\displaystyle{ 1.273 \times 10^{-6} }[/math]
10^7 [math]\displaystyle{ 4.414 \times 10^{-8} }[/math] [math]\displaystyle{ 4.197 \times 10^{-7} }[/math] [math]\displaystyle{ 1.846 \times 10^{-7} }[/math]

Estimation of [math]\displaystyle{ E_1,E_2 }[/math]

...

Estimation of [math]\displaystyle{ E_3 }[/math]

Here we assume that [math]\displaystyle{ T_0 \geq 100 }[/math], which implies also [math]\displaystyle{ T'_0 \geq 100 }[/math].

We first bound [math]\displaystyle{ w }[/math] by a Gaussian type quantity.

We have

[math]\displaystyle{ 1 + \frac{\sigma^2}{(T'_0)^2} \leq \exp( \frac{\sigma^2}{(T'_0)^2}) }[/math]

and

[math]\displaystyle{ 1 + \frac{(1-\sigma)^2}{(T'_0)^2} \leq \exp( \frac{(1-\sigma)^2}{(T'_0)^2}) }[/math]

and thus

[math]\displaystyle{ ( 1 + \frac{\sigma^2}{(T'_0)^2} )^{1/2} (1 + \frac{(1-\sigma)^2}{(T'_0)^2})^{1/2} \leq \exp( \frac{1}{2} \frac{\sigma^2}{(T'_0)^2} + \frac{1}{2} \frac{(1-\sigma)^2}{(T'_0)^2} ) }[/math]
[math]\displaystyle{ = \exp( \frac{(\sigma-1/2)^2}{(T'_0)^2} + \frac{1}{4 (T'_0)^2} ). }[/math]

Next, from calculus one can verify the bounds

[math]\displaystyle{ \log(1+x^2) \leq 1.479 \sqrt{x} }[/math]

and

[math]\displaystyle{ x - \mathrm{arctan}(x) \leq 0.230 x^2 }[/math]

for any [math]\displaystyle{ x \geq 0 }[/math], and hence

[math]\displaystyle{ \frac{(\sigma-1)_+}{4} \log (1 + \frac{\sigma^2}{(T'_0)^2}) \leq \frac{1}{4} 1.479 \frac{\sigma(\sigma-1)}{T'_0} 1_{\sigma \geq 1} }[/math]
[math]\displaystyle{ \leq 0.37 \frac{(\sigma-1/2)^2}{T'_0} 1_{\sigma \geq 1} }[/math]

and

[math]\displaystyle{ (\frac{T'_0}{2} \arctan \frac{\sigma}{T'_0} - \frac{\sigma}{2}) 1_{\sigma \lt 0} \leq \frac{T'_0}{2} 1_{\sigma\lt 0} 0.230 (\frac{|\sigma|}{T'_0})^2 }[/math]
[math]\displaystyle{ \leq 0.115 \frac{(\sigma-1/2)^2}{T'_0} 1_{\sigma \lt 0}. }[/math]

We conclude that

[math]\displaystyle{ w(\sigma) \leq \exp( \frac{(\sigma-1/2)^2}{(T'_0)^2} + \frac{1}{4 (T'_0)^2} + 0.37 \frac{(\sigma-1/2)^2}{T'_0} + \frac{1}{12(T'_0 - 0.33)}) }[/math]
[math]\displaystyle{ \leq \exp( 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} + \frac{1}{12(T'_0 - 3.33)}). }[/math]

Now we work on [math]\displaystyle{ \nu }[/math]. Observe that if [math]\displaystyle{ k \leq \frac{T'_0}{2.42 \pi} = \frac{a_0^2}{1.21} }[/math] then

[math]\displaystyle{ (1.1)^{k+2} \frac{\Gamma(\frac{k+2}{2})}{a_0^{k+2}} = \frac{1.21 k}{2 a_0^2} \frac{\Gamma(\frac{k}{2})}{a_0^k} \leq \frac{1}{2} (1.1)^{k} \frac{\Gamma(\frac{k}{2})}{a_0^{k}}, }[/math]

and hence

[math]\displaystyle{ \sum_{2 \leq k \leq \frac{T'_0}{2.24 \pi}; k\ \mathrm{even}} (1.1)^{k} \frac{\Gamma(\frac{k}{2})}{a_0^{k}} \leq 2 (1.1)^2 \frac{\Gamma(\frac{2}{2})}{a_0^2} = \frac{2.42 \sqrt{\pi}}{a_0^2} }[/math]

and similarly

[math]\displaystyle{ \sum_{3 \leq k \leq \frac{T'_0}{2.42 \pi}; k\ \mathrm{odd}} (1.1)^{k} \frac{\Gamma(\frac{k}{2})}{a_0^{k}} \leq 2 (1.1)^3 \frac{\Gamma(\frac{3}{2})}{a_0^2} = \frac{1.331}{a_0^3} }[/math]

and hence

[math]\displaystyle{ \sum_{1 \leq k \leq \frac{T'_0}{2.42 \pi}} (1.1)^{k} \frac{\Gamma(\frac{k}{2})}{a_0^{k}} \leq \frac{1.1 \sqrt{\pi}}{a_0} + \frac{2.42}{a_0^2} + \frac{1.331 \sqrt{\pi}}{a_0^3} }[/math]
[math]\displaystyle{ \leq \frac{1.1 \sqrt{\pi}}{a_0 - 1.25}; }[/math]

also

[math]\displaystyle{ (0.400 \frac{9^\sigma}{a_0} + 0.346 \frac{2^{3\sigma/2}}{a_0^2})1_{\sigma \geq 0} \leq 0.400 \times 9^\sigma (\frac{1}{a_0} + 0.865 \frac{1}{a_0^2}) }[/math]
[math]\displaystyle{ \leq 0.4 \frac{9^\sigma}{a_0 - 0.865} }[/math]

and hence (bounding [math]\displaystyle{ (0.9)^{\lceil -\sigma \rceil} \leq \frac{1}{1.1} }[/math])

[math]\displaystyle{ v(\sigma) \leq 1 + 0.400 \frac{9^\sigma}{a_0-0.865} + \frac{\sqrt{\pi}}{a_0-1.25} + \sum_{\frac{T'_0}{2.42 \pi} \lt k \leq 4-\sigma} \frac{(1.1)^{k-1}}{a_0^k} \Gamma(k/2). }[/math]

We conclude (using Fubini's theorem) that

[math]\displaystyle{ \int_{-\infty}^\infty vwf(\sigma)\ d\sigma \leq \exp(\frac{1}{12(T'_0 - 3.33)}) ( (1 + \frac{\sqrt{\pi}}{a_0-1.25}) \int_{-\infty}^\infty f(\sigma) \exp( 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma }[/math]
[math]\displaystyle{ + \frac{0.4}{a_0-0.865} \int_{-\infty}^\infty 9^\sigma f(\sigma) \exp( 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma }[/math]
[math]\displaystyle{ + \sum_{k \gt \frac{T'_0}{2.42\pi}} \frac{(1.1)^{k-1}}{a_0^k} \Gamma(k/2) \int_{-\infty}^{4-k} f(\sigma) \exp( 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma.) }[/math]

Now we estimate the integrals appearing in the right-hand side. By symmetry we have

[math]\displaystyle{ \int_{-\infty}^\infty f(\sigma) \exp( 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma = \frac{1}{\sqrt{\pi t}} \int_{-\infty}^\infty \exp( - \frac{(\sigma - (1+y)/2)^2}{t} + 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma. }[/math]
[math]\displaystyle{ = \frac{1}{\sqrt{\pi t}} \int_{-\infty}^\infty \exp( - \frac{\sigma^2}{t} + 0.37 \frac{(\sigma-y/2)^2}{T'_0-2.71} )\ d\sigma. }[/math]

Using the Gaussian identity

[math]\displaystyle{ \int_{-\infty}^\infty \exp( - (a\sigma^2 + b \sigma + c) )\ d\sigma = \sqrt{\pi} a^{-1/2} \exp( - c + \frac{b^2}{4a} ), }[/math]

valid for any [math]\displaystyle{ a,b,c }[/math] with [math]\displaystyle{ a }[/math] positive, we can write the above expression as

[math]\displaystyle{ (1 - \frac{0.37 t}{T'_0 - 2.71})^{-1/2} \exp( \frac{0.37 y^2}{4 (T'_0 - 2.71 - 0.37 t)} ). }[/math]

Similarly, since [math]\displaystyle{ 9^\sigma }[/math] is larger for [math]\displaystyle{ \sigma \geq 1/2 }[/math] than for [math]\displaystyle{ \sigma \lt 1/2 }[/math], we have

[math]\displaystyle{ \int_{-\infty}^\infty 9^\sigma f(\sigma) \exp( 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma \leq \frac{1}{\sqrt{\pi t}} \int_{-\infty}^\infty 9^\sigma \exp( - \frac{(\sigma - (1+y)/2)^2}{t} + 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma. }[/math]
[math]\displaystyle{ = \frac{3^{1+y}}{\sqrt{\pi t}} \int_{-\infty}^\infty \exp( - \frac{\sigma^2}{t} + 0.37 \frac{(\sigma-y/2)^2}{T'_0-2.71} + \sigma \log 9)\ d\sigma. }[/math]
[math]\displaystyle{ = 3^{1+y} (1 - \frac{0.37 t}{T'_0 - 2.71})^{-1/2} \exp( 0.37 \frac{y^2}{4 (T'_0-2.71)} + \frac{b^2}{4 (\frac{1}{t} - \frac{0.37}{T'_0-2.71})} ) }[/math]

where

[math]\displaystyle{ b := - \log 9 + 0.37 \frac{y}{T'_0 - 2.71}. }[/math]

If [math]\displaystyle{ T'_0 \geq 100 }[/math] and [math]\displaystyle{ y \leq 1/2 }[/math] then [math]\displaystyle{ |b| \leq \log 9 }[/math], thus the above integral is at most

[math]\displaystyle{ = 3^{1+y} (1 - \frac{0.37 t}{T'_0 - 2.71})^{-1/2} \exp( 0.37 \frac{y^2}{4 (T'_0-2.71)} + \frac{t \log^2 9}{4 (1 - \frac{0.37 t}{T'_0-2.71})} ). }[/math]

Now we consider the integral

[math]\displaystyle{ \int_{-\infty}^{4-k} f(\sigma) \exp( 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma. }[/math]

If we assume that [math]\displaystyle{ T_0 \geq 100 }[/math], then [math]\displaystyle{ 4-k \leq 4 - \frac{100}{2.42 \pi} \leq -9 }[/math] is negative, so this expression is at most

[math]\displaystyle{ \leq \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{4-k} \exp( - \frac{(\sigma - (1-y)/2)^2}{t} + 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma }[/math]
[math]\displaystyle{ \leq \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{4-k} \exp( - \sigma^2 (\frac{1}{t} - \frac{0.37}{T'_0-2.71}) )\ d\sigma. }[/math]

With [math]\displaystyle{ t \leq 0.4 }[/math] and [math]\displaystyle{ T'_0 \geq 100 }[/math], one can verify numerically that

[math]\displaystyle{ \frac{1}{t} - \frac{0.37}{T'_0-2.71} \geq 2 + \frac{1}{2} \log t }[/math]

and so (since [math]\displaystyle{ \sigma^2 \geq 1 }[/math]) one can bound the above by

[math]\displaystyle{ \leq \frac{1}{\sqrt{\pi}} \int_{-\infty}^{4-k} \exp( - 2 \sigma^2 )\ d\sigma }[/math]
[math]\displaystyle{ \leq \frac{1}{\sqrt{\pi}} \exp( - 2 (k - 4)^2 ) \frac{1}{4 (k - 4)} }[/math]

and so the contribution to [math]\displaystyle{ \int_{-\infty}^\infty vwf(\sigma)\ d\sigma) }[/math] is at most

[math]\displaystyle{ \frac{1}{4 (\frac{T'_0}{2.42\pi} - 4) \sqrt{\pi}} \sum_{k \gt \frac{T'_0}{2.42\pi}} c_k }[/math]

where

[math]\displaystyle{ c_k := \frac{(1.1)^{k-1}}{a_0^k} \Gamma(k/2) \exp( - 2(k-4)^2 ). }[/math]

Observe that

[math]\displaystyle{ c_{k+2}/c_k = \frac{(1.1)^2}{a_0^2} \frac{k}{2} \exp( - 4 (k+5) ) }[/math]

and this can be shown to be less than [math]\displaystyle{ 1/2 }[/math] if [math]\displaystyle{ T_0 \geq 100 }[/math], and [math]\displaystyle{ k \gt \frac{T'_0}{2.42 \pi} }[/math]. Thus

[math]\displaystyle{ \sum_{k \gt \frac{T'_0}{2.42\pi}} c_k \leq 4 \sup_{\frac{T'_0}{2.42\pi} \lt k \leq \frac{T'_0}{2.42\pi}+2} a_k }[/math]
[math]\displaystyle{ \leq 4 (\frac{1.1}{a_0})^{\frac{T'_0}{2.42\pi}} \Gamma( \frac{T'_0}{4.84\pi}+1 ) \exp( - 4 (\frac{T'_0}{2.42\pi}-4)^2 ). }[/math]

Putting all this together, we obtain

[math]\displaystyle{ \int_{-\infty}^\infty vwf(\sigma)\ d\sigma \leq \exp(\frac{1}{12(T'_0 - 3.33)}) (1 - \frac{0.37 t}{T'_0 - 2.71})^{-1/2} \exp( \frac{0.37 y^2}{4 (T'_0 - 2.71 - 0.37 t)} ) \times }[/math]
[math]\displaystyle{ (1 + \frac{\sqrt{\pi}}{a_0-1.25} + \frac{0.4}{a_0-0.85} 3^{1+y} \exp( \frac{t \log^2 9}{4 (1 - \frac{0.37}{T'_0-2.71})} ) ) }[/math]
[math]\displaystyle{ + \varepsilon }[/math]

where [math]\displaystyle{ \varepsilon }[/math] is the exponentially small quantity

[math]\displaystyle{ \varepsilon := \exp(\frac{1}{12(T'_0 - 3.33)}) \frac{1}{(\frac{T'_0}{2.42\pi} - 4) \sqrt{\pi}} (\frac{1.1}{a_0})^{\frac{T'_0}{2.42\pi}} \Gamma( \frac{T'_0}{4.84\pi}+1 ) \exp( - 4 (\frac{T'_0}{2.42\pi}-4)^2 ) }[/math]

which looks fearsome but is extremely negligible in practice. For instance, one can check that

[math]\displaystyle{ \varepsilon \leq \frac{10^{-10}}{a_0^2} \leq 0.4 (\frac{1}{a_0-0.85} - \frac{1}{a_0-1.25}) }[/math]

whenever [math]\displaystyle{ T_0 \geq 100 }[/math], and hence

[math]\displaystyle{ \int_{-\infty}^\infty vwf(\sigma)\ d\sigma \leq (1 - \frac{0.37 t}{T'_0 - 2.71})^{-1/2} \exp( \frac{1}{12(T'_0 - 3.33)} + \frac{0.37 y^2}{4 (T'_0 - 2.71 - 0.37 t)} ) \times }[/math]
[math]\displaystyle{ (1 + \frac{\sqrt{\pi}}{a_0-1.25} + \frac{0.4}{a_0-1.25} 3^{1+y} \exp( \frac{t \log^2 9}{4 (1 - \frac{0.37}{T'_0-2.71})} ) ). }[/math]

To clean this up, we write

[math]\displaystyle{ 1 - \frac{0.37 t}{T'_0 - 2.71} = \exp( O_{\leq}( \frac{0.37 t}{T'_0 - 2.71 - 0.37 t} ) }[/math]

and note that [math]\displaystyle{ T'_0 - 2.71 - 0.37t \geq T'_0 - 3.33 }[/math] to obtain

[math]\displaystyle{ \int_{-\infty}^\infty vwf(\sigma)\ d\sigma \leq \exp( \frac{6 \times 0.37t + 1 + 3 \times 0.37 y^2}{12(T'_0 - 3.33)}) \times }[/math]
[math]\displaystyle{ (1 + \frac{1}{a_0-1.25} (\sqrt{\pi} + 1.2 \times 3^y \exp( \frac{t \log^2 9}{4 (1 - \frac{0.37 t}{T'_0-2.71})} ) ). }[/math]

We bound [math]\displaystyle{ (6 \times 0.37t + 1 + 3 \times 0.37 y^2)/12 \leq 0.181 }[/math] and [math]\displaystyle{ 1.2 \times 3^y \exp( \frac{t \log^2 9}{4(1 - \frac{0.37 t}{T'_0-2.71}) \leq 5.15 }[/math] for [math]\displaystyle{ y \leq 1/2 }[/math], thus

[math]\displaystyle{ \int_{-\infty}^\infty vwf(\sigma)\ d\sigma \leq \exp( \frac{0.181}{T'_0 - 3.33}) (1 + \frac{5.15}{a_0-1.25}). }[/math]

We conclude that

[math]\displaystyle{ E_3 \leq \frac{1}{8} \sqrt{\pi} \exp( - \frac{t\pi^2}{64}) (T'_0)^{3/2} e^{-\pi T_0/4} \exp( \frac{0.181}{T'_0 - 3.33}) (1 + \frac{5.15}{a_0-1.25}). }[/math]