|
|
Line 227: |
Line 227: |
| == Controlling |H_t-A-B|/|B_0| == | | == Controlling |H_t-A-B|/|B_0| == |
|
| |
|
| As computed in [[Effective bounds on H_t - second approach]], there is an effective bound
| | See [[Controlling H_t-A-B/B_0]]. |
| :<math>|H_{eff} - A^{eff} - B^{eff}| \leq E_1 + E_2 + E_3</math>
| |
| where
| |
| :<math>H_{0,1}(s) := \frac{s (s-1)}{2} \pi^{-s/2} \sqrt{2\pi} \exp( (\frac{s}{2} - \frac{1}{2}) \log \frac{s}{2} - \frac{s}{2} )</math>
| |
| :<math> E_1 := \frac{1}{8 (T - 3.33)} \exp( \frac{t}{4} \mathrm{Re} \alpha_1(\frac{1-y+ix}{2})^2 ) |H_{0,1}(\frac{1-y+ix}{2})| \epsilon'(\frac{1-y+ix}{2}) </math>
| |
| :<math> E_2 := \frac{1}{8 (T - 3.33)} \exp( \frac{t}{4} \mathrm{Re} \alpha_1(\frac{1+y+ix}{2})^2 ) |H_{0,1}(\frac{1+y+ix}{2})| \epsilon'(\frac{1+y+ix}{2}) </math>
| |
| :<math> E_3 := \frac{1}{8} \sqrt{\pi} \exp( -\frac{t \pi^2}{64} ) (T')^{3/2} e^{-\pi T/4} \int_{-\infty}^\infty v(\sigma) w(\sigma) f(\sigma)\ d\sigma</math>
| |
| :<math> \epsilon'(s) := \frac{1}{2} \sum_{n=1}^N \frac{1}{n^{\mathrm{Re}(s) + \frac{t \mathrm{Re} \alpha_1(s)}{2} - \frac{t}{4} \log n}}
| |
| \exp(\frac{1}{2(T-3.33)} (\frac{t^2}{4} |\alpha_1(s) - \log n|^2 + \frac{1}{3} + t))
| |
| (\frac{t^2}{4} |\alpha_1(s) - \log n|^2 + \frac{1}{3} + t ) </math>
| |
| :<math> f(\sigma) := \frac{1}{2\sqrt{\pi t}} (e^{-(\sigma-(1-y)/2)^2/t} + e^{-(\sigma-(1+y)/2)^2/t}) \quad (4.1)</math>
| |
| :<math>w(\sigma) := (1 + \frac{\sigma^2}{(T'_0)^2})^{1/2} (1 + \frac{(1-\sigma)^2}{(T'_0)^2})^{1/2}
| |
| \exp( \frac{(\sigma-1)_+}{4} \log (1 + \frac{\sigma^2}{(T'_0)^2}) + (\frac{T'_0}{2} \arctan \frac{\sigma}{T'_0} - \frac{\sigma}{2}) 1_{\sigma < 0} + \frac{1}{12(T'_0 - 0.33)}) </math>
| |
| :<math>v(\sigma) := 1 + (0.400 \frac{9^\sigma}{a_0} + 0.346 \frac{2^{3\sigma/2}}{a_0^2}) 1_{\sigma \geq 0} + (9/10)^{\lceil -\sigma \rceil} \sum_{1 \leq k \leq 4-\sigma} (1.1)^k \frac{\Gamma(k/2)}{a_0^k} 1_{\sigma < 0} </math>
| |
| :<math>a_0 := \sqrt{\frac{T'_0}{2\pi}}</math>
| |
| :<math> \alpha_1(s) := \frac{1}{2s} + \frac{1}{s-1} + \frac{1}{2} \log \frac{s}{2\pi} </math>
| |
| :<math> N := \lfloor \sqrt{ \frac{T'}{2\pi}} \rfloor</math>
| |
| :<math> T' := \frac{x}{2} + \frac{\pi t}{8} </math>
| |
| :<math> T'_0 := T_0 + \frac{\pi t}{8} </math>
| |
| | |
| | |
| Comparison between <math>H^{eff} = A^{eff}+B^{eff}</math>, <math>A'+B'</math>, and the effective error bound <math>E_1+E_2+E_3</math> on <math>H - H^{eff}</math> at some points of <math>x</math> [https://terrytao.wordpress.com/2018/02/12/polymath15-third-thread-computing-and-approximating-h_t/#comment-492893 source]:
| |
| | |
| {| border=1
| |
| |-
| |
| ! style="text-align:left;"| <math>x</math>
| |
| ! <math>|H^{eff}/B'_0|</math>
| |
| ! <math>|(A'+B')/B'_0|</math>
| |
| ! <math>|(H^{eff}-(A'+B'))/B'_0|</math>
| |
| ! <math>|(H^{eff}-(A'+B'))/B'_0| + |(E_1+E_2+E_3)/B'_0|</math>
| |
| |-
| |
| |10000
| |
| |0.52
| |
| |0.52
| |
| |0.0006
| |
| |0.039
| |
| |-
| |
| |12131
| |
| |1.28
| |
| |1.28
| |
| |0.0004
| |
| |0.033
| |
| |-
| |
| |15256
| |
| |0.97
| |
| |0.97
| |
| |0.0003
| |
| |0.027
| |
| |-
| |
| |18432
| |
| |0.68
| |
| |0.68
| |
| |0.0003
| |
| |0.023
| |
| |-
| |
| |20567
| |
| |0.98
| |
| |0.98
| |
| |0.0004
| |
| |0.022
| |
| |-
| |
| |30654
| |
| |1.93
| |
| |1.93
| |
| |0.0004
| |
| |0.016
| |
| |}
| |
| | |
| The <math>E_3</math> error dominates the other two [https://terrytao.wordpress.com/2018/02/12/polymath15-third-thread-computing-and-approximating-h_t/#comment-492922 source]:
| |
| | |
| {| border=1
| |
| |-
| |
| ! style="text-align:left;"| <math>x</math>
| |
| ! <math>\frac{E_3}{E_1+E_2}</math>
| |
| |-
| |
| |10000
| |
| |9.11
| |
| |-
| |
| |15000
| |
| |14.97
| |
| |-
| |
| |20000
| |
| |19.26
| |
| |-
| |
| |50000
| |
| |32.39
| |
| |-
| |
| |100000
| |
| |42.99
| |
| |-
| |
| |<math>10^7</math>
| |
| |87.23
| |
| |}
| |
| | |
| <math>A+B-C</math> is a good approximation to <math>H_t</math> [https://terrytao.wordpress.com/2018/02/12/polymath15-third-thread-computing-and-approximating-h_t/#comment-492695 source] [https://terrytao.wordpress.com/2018/02/24/polymath15-fourth-thread-closing-in-on-the-test-problem/#comment-493282 source] [https://terrytao.wordpress.com/2018/02/24/polymath15-fourth-thread-closing-in-on-the-test-problem/#comment-493319 source]
| |
| | |
| {| border=1
| |
| |-
| |
| ! style="text-align:left;"| <math>x</math>
| |
| ! <math>\frac{|H_t-(A+B-C)|}{|B_0|}</math>
| |
| ! <math>\frac{|H_t-(A^{eff}+B^{eff}-C^{eff})|}{|B_0^{eff}|}</math>
| |
|
| |
| |-
| |
| |160
| |
| |0.06993270565802375041
| |
| |0.009155667752
| |
| |-
| |
| |320
| |
| |0.006716674125965016299
| |
| |0.0005529962481
| |
| |-
| |
| |480
| |
| |0.005332893070605698501
| |
| |0.0004966282128
| |
| |-
| |
| |640
| |
| |0.003363431256036816251
| |
| |0.0004482768972
| |
| |-
| |
| |800
| |
| |0.1548144749150572349
| |
| |0.002644344570
| |
| |-
| |
| |960
| |
| |0.03009229958121352990
| |
| |0.001270168744
| |
| |-
| |
| |1120
| |
| |0.004507664238680722472
| |
| |0.0009957229500
| |
| |-
| |
| |1280
| |
| |0.002283591962997851167
| |
| |0.0007024411378
| |
| |-
| |
| |1440
| |
| |0.01553727684468691873
| |
| |0.0007000473085
| |
| |-
| |
| |1600
| |
| |0.001778051951547709718
| |
| |0.0004882487218
| |
| |-
| |
| |1760
| |
| |0.02763769444052338578
| |
| |0.0002518910919
| |
| |-
| |
| |1920
| |
| |0.002108779890256530964
| |
| |0.0008378989413
| |
| |-
| |
| |2080
| |
| |0.02746770886040058927
| |
| |0.0004924765754
| |
| |-
| |
| |2240
| |
| |0.001567020041379128455
| |
| |0.0001171320991
| |
| |-
| |
| |2400
| |
| |0.01801417530687959747
| |
| |0.0002443802551
| |
| |-
| |
| |2560
| |
| |0.001359561117436848149
| |
| |0.0004569058755
| |
| |-
| |
| |2720
| |
| |0.008503327577240081269
| |
| |0.0006355966221
| |
| |-
| |
| |2880
| |
| |0.001089253262122934826
| |
| |0.0008864917365
| |
| |-
| |
| |3040
| |
| |0.003004181560093288747
| |
| |0.00004326840265
| |
| |-
| |
| |3200
| |
| |0.02931455383125538672
| |
| |0.0003598521453
| |
| |}
| |
| | |
| A closer look at the "spike" in error near <math>x=800 \approx 256 \pi \approx 804 </math>:
| |
| | |
| {| border=1
| |
| |-
| |
| ! style="text-align:left;"| <math>x</math>
| |
| ! <math>\frac{|H_t-(A+B-C)|}{|B_0|}</math>
| |
| |-
| |
| |622.035345
| |
| |0.003667321
| |
| |-
| |
| |631.460123
| |
| |0.004268055
| |
| |-
| |
| |640.884901
| |
| |0.003284407
| |
| |-
| |
| |650.309679
| |
| |0.004453589
| |
| |-
| |
| |659.734457
| |
| |0.003872174
| |
| |-
| |
| |669.159235
| |
| |0.005048162
| |
| |-
| |
| |678.584013
| |
| |0.005009254
| |
| |-
| |
| |688.008791
| |
| |0.007418686
| |
| |-
| |
| |697.433569
| |
| |0.007464541
| |
| |-
| |
| |706.858347
| |
| |0.010692337
| |
| |-
| |
| |716.283125
| |
| |0.012938629
| |
| |-
| |
| |725.707903
| |
| |0.017830524
| |
| |-
| |
| |735.132681
| |
| |0.022428596
| |
| |-
| |
| |744.557459
| |
| |0.030907876
| |
| |-
| |
| |753.982237
| |
| |0.040060298
| |
| |-
| |
| |763.407015
| |
| |0.053652069
| |
| |-
| |
| |772.831793
| |
| |0.071092824
| |
| |-
| |
| |782.256571
| |
| |0.094081856
| |
| |-
| |
| |791.681349
| |
| |0.123108726
| |
| |-
| |
| |801.106127
| |
| |0.159299234
| |
| |-
| |
| |810.530905
| |
| |0.002870724
| |
| |}
| |
| | |
| In practice <math>E_1/B^{eff}_0</math> is smaller than <math>E_2/B^{eff}_0</math>, which is mostly dominated by the first term in the sum which is close to <math>\frac{t^2}{16 x} \log^2 \frac{x}{4\pi}</math>:
| |
| | |
| {| border=1
| |
| |-
| |
| ! style="text-align:left;"| <math>x</math>
| |
| ! <math>E_1 / B^{eff}_0</math>
| |
| ! <math>E_2 / B^{eff}_0</math>
| |
| ! <math>\frac{t^2}{16x} \log^2 \frac{x}{4\pi}</math>
| |
| |-
| |
| |10^3
| |
| |<math>1.389 \times 10^{-3}</math>
| |
| |<math>2.341 \times 10^{-3}</math>
| |
| |<math>1.915 \times 10^{-4}</math>
| |
| |-
| |
| |10^4
| |
| |<math>1.438 \times 10^{-4}</math>
| |
| |<math>3.156 \times 10^{-4}</math>
| |
| |<math>4.461 \times 10^{-5}</math>
| |
| |-
| |
| |10^5
| |
| |<math>1.118 \times 10^{-5}</math>
| |
| |<math>3.574 \times 10^{-5}</math>
| |
| |<math>8.067 \times 10^{-6}</math>
| |
| |-
| |
| |10^6
| |
| |<math>7.328 \times 10^{-7}</math>
| |
| |<math>3.850 \times 10^{-6}</math>
| |
| |<math>1.273 \times 10^{-6}</math>
| |
| |-
| |
| |10^7
| |
| |<math>4.414 \times 10^{-8}</math>
| |
| |<math>4.197 \times 10^{-7}</math>
| |
| |<math>1.846 \times 10^{-7}</math>
| |
| |}
| |
| | |
| === Estimation of <math>E_1,E_2</math> ===
| |
| | |
| ...
| |
| | |
| === Estimation of <math>E_3</math> ===
| |
| | |
| Here we assume that <math>T_0 \geq 100</math>, which implies also <math>T'_0 \geq 100</math>.
| |
| | |
| We first bound <math>w</math> by a Gaussian type quantity.
| |
| | |
| We have
| |
| :<math>1 + \frac{\sigma^2}{(T'_0)^2} \leq \exp( \frac{\sigma^2}{(T'_0)^2})</math>
| |
| and
| |
| :<math>1 + \frac{(1-\sigma)^2}{(T'_0)^2} \leq \exp( \frac{(1-\sigma)^2}{(T'_0)^2})</math>
| |
| and thus
| |
| :<math>( 1 + \frac{\sigma^2}{(T'_0)^2} )^{1/2} (1 + \frac{(1-\sigma)^2}{(T'_0)^2})^{1/2} \leq \exp( \frac{1}{2} \frac{\sigma^2}{(T'_0)^2} +
| |
| \frac{1}{2} \frac{(1-\sigma)^2}{(T'_0)^2} )</math>
| |
| :<math> = \exp( \frac{(\sigma-1/2)^2}{(T'_0)^2} + \frac{1}{4 (T'_0)^2} ).</math>
| |
| Next, from calculus one can verify the bounds
| |
| :<math> \log(1+x^2) \leq 1.479 \sqrt{x}</math>
| |
| and
| |
| :<math> x - \mathrm{arctan}(x) \leq 0.230 x^2</math>
| |
| for any <math>x \geq 0</math>, and hence
| |
| :<math> \frac{(\sigma-1)_+}{4} \log (1 + \frac{\sigma^2}{(T'_0)^2}) \leq \frac{1}{4} 1.479 \frac{\sigma(\sigma-1)}{T'_0} 1_{\sigma \geq 1} </math>
| |
| :<math> \leq 0.37 \frac{(\sigma-1/2)^2}{T'_0} 1_{\sigma \geq 1}</math>
| |
| and
| |
| :<math>(\frac{T'_0}{2} \arctan \frac{\sigma}{T'_0} - \frac{\sigma}{2}) 1_{\sigma < 0} \leq \frac{T'_0}{2} 1_{\sigma<0} 0.230 (\frac{|\sigma|}{T'_0})^2 </math>
| |
| :<math> \leq 0.115 \frac{(\sigma-1/2)^2}{T'_0} 1_{\sigma < 0}.</math>
| |
| We conclude that
| |
| :<math> w(\sigma) \leq \exp( \frac{(\sigma-1/2)^2}{(T'_0)^2} + \frac{1}{4 (T'_0)^2} + 0.37 \frac{(\sigma-1/2)^2}{T'_0} + \frac{1}{12(T'_0 - 0.33)}) </math>
| |
| :<math> \leq \exp( 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} + \frac{1}{12(T'_0 - 3.33)}).</math>
| |
| | |
| Now we work on <math>\nu</math>. Observe that if <math>k \leq \frac{T'_0}{2.42 \pi} = \frac{a_0^2}{1.21}</math> then
| |
| :<math> (1.1)^{k+2} \frac{\Gamma(\frac{k+2}{2})}{a_0^{k+2}} = \frac{1.21 k}{2 a_0^2} \frac{\Gamma(\frac{k}{2})}{a_0^k} \leq \frac{1}{2} (1.1)^{k} \frac{\Gamma(\frac{k}{2})}{a_0^{k}},</math>
| |
| and hence
| |
| :<math> \sum_{2 \leq k \leq \frac{T'_0}{2.24 \pi}; k\ \mathrm{even}} (1.1)^{k} \frac{\Gamma(\frac{k}{2})}{a_0^{k}} \leq 2 (1.1)^2 \frac{\Gamma(\frac{2}{2})}{a_0^2} = \frac{2.42 \sqrt{\pi}}{a_0^2}</math>
| |
| and similarly
| |
| :<math> \sum_{3 \leq k \leq \frac{T'_0}{2.42 \pi}; k\ \mathrm{odd}} (1.1)^{k} \frac{\Gamma(\frac{k}{2})}{a_0^{k}} \leq 2 (1.1)^3 \frac{\Gamma(\frac{3}{2})}{a_0^2} = \frac{1.331}{a_0^3}</math>
| |
| and hence
| |
| :<math> \sum_{1 \leq k \leq \frac{T'_0}{2.42 \pi}} (1.1)^{k} \frac{\Gamma(\frac{k}{2})}{a_0^{k}} \leq \frac{1.1 \sqrt{\pi}}{a_0} + \frac{2.42}{a_0^2} + \frac{1.331 \sqrt{\pi}}{a_0^3} </math>
| |
| :<math> \leq \frac{1.1 \sqrt{\pi}}{a_0 - 1.25};</math>
| |
| also
| |
| :<math>(0.400 \frac{9^\sigma}{a_0} + 0.346 \frac{2^{3\sigma/2}}{a_0^2})1_{\sigma \geq 0} \leq 0.400 \times 9^\sigma (\frac{1}{a_0} + 0.865 \frac{1}{a_0^2})</math>
| |
| :<math> \leq 0.4 \frac{9^\sigma}{a_0 - 0.865}</math>
| |
| and hence (bounding <math>(0.9)^{\lceil -\sigma \rceil} \leq \frac{1}{1.1}</math>)
| |
| :<math> v(\sigma) \leq 1 + 0.400 \frac{9^\sigma}{a_0-0.865} + \frac{\sqrt{\pi}}{a_0-1.25} + \sum_{\frac{T'_0}{2.42 \pi} < k \leq 4-\sigma} \frac{(1.1)^{k-1}}{a_0^k} \Gamma(k/2).</math>
| |
| We conclude (using Fubini's theorem) that
| |
| :<math> \int_{-\infty}^\infty vwf(\sigma)\ d\sigma \leq \exp(\frac{1}{12(T'_0 - 3.33)}) (
| |
| (1 + \frac{\sqrt{\pi}}{a_0-1.25}) \int_{-\infty}^\infty f(\sigma) \exp( 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma </math>
| |
| :<math> + \frac{0.4}{a_0-0.865} \int_{-\infty}^\infty 9^\sigma f(\sigma) \exp( 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma </math>
| |
| :<math> + \sum_{k > \frac{T'_0}{2.42\pi}} \frac{(1.1)^{k-1}}{a_0^k} \Gamma(k/2) \int_{-\infty}^{4-k} f(\sigma) \exp( 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma.)</math>
| |
| Now we estimate the integrals appearing in the right-hand side. By symmetry we have
| |
| :<math>\int_{-\infty}^\infty f(\sigma) \exp( 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma
| |
| = \frac{1}{\sqrt{\pi t}} \int_{-\infty}^\infty \exp( - \frac{(\sigma - (1+y)/2)^2}{t} + 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma.</math>
| |
| :<math>= \frac{1}{\sqrt{\pi t}} \int_{-\infty}^\infty \exp( - \frac{\sigma^2}{t} + 0.37 \frac{(\sigma-y/2)^2}{T'_0-2.71} )\ d\sigma.</math>
| |
| | |
| Using the Gaussian identity
| |
| :<math> \int_{-\infty}^\infty \exp( - (a\sigma^2 + b \sigma + c) )\ d\sigma = \sqrt{\pi} a^{-1/2} \exp( - c + \frac{b^2}{4a} ),</math>
| |
| valid for any <math>a,b,c</math> with <math>a</math> positive, we can write the above expression as
| |
| :<math> (1 - \frac{0.37 t}{T'_0 - 2.71})^{-1/2} \exp( \frac{0.37 y^2}{4 (T'_0 - 2.71 - 0.37 t)} ).</math>
| |
| Similarly, since <math>9^\sigma</math> is larger for <math>\sigma \geq 1/2</math> than for <math>\sigma <1/2</math>, we have
| |
| :<math>\int_{-\infty}^\infty 9^\sigma f(\sigma) \exp( 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma
| |
| \leq \frac{1}{\sqrt{\pi t}} \int_{-\infty}^\infty 9^\sigma \exp( - \frac{(\sigma - (1+y)/2)^2}{t} + 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma.</math>
| |
| :<math>= \frac{3^{1+y}}{\sqrt{\pi t}} \int_{-\infty}^\infty \exp( - \frac{\sigma^2}{t} + 0.37 \frac{(\sigma-y/2)^2}{T'_0-2.71} + \sigma \log 9)\ d\sigma.</math>
| |
| :<math>= 3^{1+y} (1 - \frac{0.37 t}{T'_0 - 2.71})^{-1/2} \exp( 0.37 \frac{y^2}{4 (T'_0-2.71)} + \frac{b^2}{4 (\frac{1}{t} - \frac{0.37}{T'_0-2.71})} )</math>
| |
| where
| |
| :<math> b := - \log 9 + 0.37 \frac{y}{T'_0 - 2.71}.</math>
| |
| If <math>T'_0 \geq 100</math> and <math>y \leq 1/2</math> then <math>|b| \leq \log 9</math>, thus the above integral is at most
| |
| :<math>= 3^{1+y} (1 - \frac{0.37 t}{T'_0 - 2.71})^{-1/2} \exp( 0.37 \frac{y^2}{4 (T'_0-2.71)} + \frac{t \log^2 9}{4 (1 - \frac{0.37 t}{T'_0-2.71})} ).</math>
| |
| Now we consider the integral
| |
| :<math> \int_{-\infty}^{4-k} f(\sigma) \exp( 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma.</math>
| |
| If we assume that <math>T_0 \geq 100</math>, then <math>4-k \leq 4 - \frac{100}{2.42 \pi} \leq -9</math> is negative, so this expression is at most
| |
| :<math>\leq \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{4-k} \exp( - \frac{(\sigma - (1-y)/2)^2}{t} + 0.37 \frac{(\sigma-1/2)^2}{T'_0-2.71} )\ d\sigma</math>
| |
| :<math> \leq \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{4-k} \exp( - \sigma^2 (\frac{1}{t} - \frac{0.37}{T'_0-2.71}) )\ d\sigma.</math>
| |
| With <math>t \leq 0.4</math> and <math>T'_0 \geq 100</math>, one can verify numerically that
| |
| :<math>\frac{1}{t} - \frac{0.37}{T'_0-2.71} \geq 2 + \frac{1}{2} \log t</math>
| |
| and so (since <math> \sigma^2 \geq 1 </math>) one can bound the above by
| |
| :<math> \leq \frac{1}{\sqrt{\pi}} \int_{-\infty}^{4-k} \exp( - 2 \sigma^2 )\ d\sigma</math>
| |
| :<math> \leq \frac{1}{\sqrt{\pi}} \exp( - 2 (k - 4)^2 ) \frac{1}{4 (k - 4)}</math>
| |
| and so the contribution to <math>\int_{-\infty}^\infty vwf(\sigma)\ d\sigma)</math> is at most
| |
| :<math> \frac{1}{4 (\frac{T'_0}{2.42\pi} - 4) \sqrt{\pi}} \sum_{k > \frac{T'_0}{2.42\pi}} c_k</math>
| |
| where
| |
| :<math>c_k := \frac{(1.1)^{k-1}}{a_0^k} \Gamma(k/2) \exp( - 2(k-4)^2 ).</math>
| |
| | |
| Observe that
| |
| :<math>c_{k+2}/c_k = \frac{(1.1)^2}{a_0^2} \frac{k}{2} \exp( - 4 (k+5) )</math>
| |
| and this can be shown to be less than <math>1/2</math> if <math>T_0 \geq 100</math>, and <math>k > \frac{T'_0}{2.42 \pi}</math>. Thus
| |
| :<math>\sum_{k > \frac{T'_0}{2.42\pi}} c_k \leq 4 \sup_{\frac{T'_0}{2.42\pi} < k \leq \frac{T'_0}{2.42\pi}+2} a_k</math>
| |
| :<math> \leq 4 (\frac{1.1}{a_0})^{\frac{T'_0}{2.42\pi}} \Gamma( \frac{T'_0}{4.84\pi}+1 ) \exp( - 4 (\frac{T'_0}{2.42\pi}-4)^2 ).</math>
| |
| | |
| Putting all this together, we obtain
| |
| :<math>\int_{-\infty}^\infty vwf(\sigma)\ d\sigma \leq
| |
| \exp(\frac{1}{12(T'_0 - 3.33)}) (1 - \frac{0.37 t}{T'_0 - 2.71})^{-1/2} \exp( \frac{0.37 y^2}{4 (T'_0 - 2.71 - 0.37 t)} ) \times </math>
| |
| :<math>
| |
| (1 + \frac{\sqrt{\pi}}{a_0-1.25} + \frac{0.4}{a_0-0.85}
| |
| 3^{1+y} \exp( \frac{t \log^2 9}{4 (1 - \frac{0.37}{T'_0-2.71})} ) )</math>
| |
| :<math> + \varepsilon</math>
| |
| where <math>\varepsilon</math> is the exponentially small quantity
| |
| :<math> \varepsilon := \exp(\frac{1}{12(T'_0 - 3.33)})
| |
| \frac{1}{(\frac{T'_0}{2.42\pi} - 4) \sqrt{\pi}}
| |
| (\frac{1.1}{a_0})^{\frac{T'_0}{2.42\pi}} \Gamma( \frac{T'_0}{4.84\pi}+1 ) \exp( - 4 (\frac{T'_0}{2.42\pi}-4)^2 )</math>
| |
| which looks fearsome but is extremely negligible in practice. For instance, one can check that
| |
| :<math> \varepsilon \leq \frac{10^{-10}}{a_0^2} \leq 0.4 (\frac{1}{a_0-0.85} - \frac{1}{a_0-1.25})</math>
| |
| whenever <math>T_0 \geq 100</math>, and hence
| |
| :<math>\int_{-\infty}^\infty vwf(\sigma)\ d\sigma \leq
| |
| (1 - \frac{0.37 t}{T'_0 - 2.71})^{-1/2} \exp( \frac{1}{12(T'_0 - 3.33)} + \frac{0.37 y^2}{4 (T'_0 - 2.71 - 0.37 t)} ) \times </math>
| |
| :<math>
| |
| (1 + \frac{\sqrt{\pi}}{a_0-1.25} + \frac{0.4}{a_0-1.25}
| |
| 3^{1+y} \exp( \frac{t \log^2 9}{4 (1 - \frac{0.37}{T'_0-2.71})} ) ).</math>
| |
| To clean this up, we write
| |
| :<math>1 - \frac{0.37 t}{T'_0 - 2.71} = \exp( O_{\leq}( \frac{0.37 t}{T'_0 - 2.71 - 0.37 t} )</math>
| |
| and note that <math>T'_0 - 2.71 - 0.37t \geq T'_0 - 3.33</math> to obtain
| |
| :<math>\int_{-\infty}^\infty vwf(\sigma)\ d\sigma \leq \exp( \frac{6 \times 0.37t + 1 + 3 \times 0.37 y^2}{12(T'_0 - 3.33)}) \times </math>
| |
| :<math>
| |
| (1 + \frac{1}{a_0-1.25} (\sqrt{\pi} + 1.2 \times 3^y \exp( \frac{t \log^2 9}{4 (1 - \frac{0.37 t}{T'_0-2.71})} ) ).</math>
| |
| We bound <math>(6 \times 0.37t + 1 + 3 \times 0.37 y^2)/12 \leq 0.181</math> and <math>1.2 \times 3^y \exp( \frac{t \log^2 9}{4(1 - \frac{0.37 t}{T'_0-2.71}) \leq 5.15</math> for <math>y \leq 1/2</math>, thus
| |
| :<math>\int_{-\infty}^\infty vwf(\sigma)\ d\sigma \leq \exp( \frac{0.181}{T'_0 - 3.33}) (1 + \frac{5.15}{a_0-1.25}).</math>
| |
| We conclude that
| |
| :<math>E_3 \leq \frac{1}{8} \sqrt{\pi} \exp( - \frac{t\pi^2}{64}) (T'_0)^{3/2} e^{-\pi T_0/4} \exp( \frac{0.181}{T'_0 - 3.33}) (1 + \frac{5.15}{a_0-1.25}).</math>
| |
We are initially focusing attention on the following
- Test problem For [math]\displaystyle{ t=y=0.4 }[/math], can one prove that [math]\displaystyle{ H_t(x+iy) \neq 0 }[/math] for all [math]\displaystyle{ x \geq 0 }[/math]?
If we can show this, it is likely that (with the additional use of the argument principle, and some further information on the behaviour of [math]\displaystyle{ H_t(x+iy) }[/math] at [math]\displaystyle{ y=0.4 }[/math]) that one can show that [math]\displaystyle{ H_t(x+iy) \neq 0 }[/math] for all [math]\displaystyle{ y \geq 0.4 }[/math] as well. This would give a new upper bound
- [math]\displaystyle{ \Lambda \leq 0.4 + \frac{1}{2} (0.4)^2 = 0.48 }[/math]
for the de Bruijn-Newman constant.
For very small values of [math]\displaystyle{ x }[/math] we expect to be able to establish this by direct calculation of [math]\displaystyle{ H_t(x+iy) }[/math]. For medium or large values, the strategy is to use a suitable approximation
- [math]\displaystyle{ H_t(x+iy) \approx A + B }[/math]
for some relatively easily computable quantities [math]\displaystyle{ A = A_t(x+iy), B = B_t(x+iy) }[/math] (it may possibly be necessary to use a refined approximation [math]\displaystyle{ A+B-C }[/math] instead). The quantity [math]\displaystyle{ B }[/math] contains a non-zero main term [math]\displaystyle{ B_0 }[/math] which is expected to roughly dominate. To show [math]\displaystyle{ H_t(x+iy) }[/math] is non-zero, it would suffice to show that
- [math]\displaystyle{ \frac{|H_t - A - B|}{|B_0|} \lt \frac{|A + B|}{|B_0|}. }[/math]
Thus one will seek upper bounds on the error [math]\displaystyle{ \frac{|H_t - A - B|}{|B_0|} }[/math] and lower bounds on [math]\displaystyle{ \frac{|A+B|}{|B_0|} }[/math] for various ranges of [math]\displaystyle{ x }[/math]. Numerically it seems that the RHS stays above 0.4 as soon as [math]\displaystyle{ x }[/math] is moderately large, while the LHS stays below 0.1, which looks promising for the rigorous arguments.
Choices of approximation
There are a number of slightly different approximations we have used in previous discussion. The first approximation was [math]\displaystyle{ A+B }[/math], where
- [math]\displaystyle{ A := \frac{1}{8} \frac{s(s-1)}{2} \pi^{-s/2} \Gamma(s/2) \sum_{n=1}^N \frac{\exp(\frac{t}{16} \log^2 \frac{s+4}{2\pi n^2})}{n^s} }[/math]
- [math]\displaystyle{ B := \frac{1}{8} \frac{s(s-1)}{2} \pi^{-(1-s)/2} \Gamma((1-s)/2) \sum_{n=1}^N \frac{\exp(\frac{t}{16} \log^2 \frac{5-s}{2\pi n^2})}{n^{1-s}} }[/math]
- [math]\displaystyle{ B_0 := \frac{1}{8} \frac{s(s-1)}{2} \pi^{-(1-s)/2} \Gamma((1-s)/2) \exp( \frac{t}{16} \log^2 \frac{5-s}{2\pi} ) }[/math]
- [math]\displaystyle{ s := \frac{1-y+ix}{2} }[/math]
- [math]\displaystyle{ N := \lfloor \sqrt{\frac{\mathrm{Im} s}{2\pi}} \rfloor = \lfloor \sqrt{\frac{x}{4\pi}} \rfloor. }[/math]
There is also the refinement [math]\displaystyle{ A+B-C }[/math], where
- [math]\displaystyle{ C:= \frac{1}{8} \exp(-\frac{t\pi^2}{64}) \frac{s(s-1)}{2} \pi^{-s/2} \Gamma(s/2) \frac{e^{-i\pi s} \Gamma(1-s)}{2\pi i} (2\pi i N)^{s-1} \Psi( \frac{s}{2\pi i N}-N ) }[/math]
- [math]\displaystyle{ \Psi(\alpha) := 2\pi \frac{\cos \pi(\frac{1}{2} \alpha^2 - \alpha - \frac{\pi}{8})}{\cos(\pi \alpha)} \exp( \frac{i \pi}{2} \alpha^2 - \frac{5 \pi i}{8}). }[/math]
The first approximation was modified slightly to [math]\displaystyle{ A'+B' }[/math], where
- [math]\displaystyle{ A' := \frac{2}{8} \pi^{-s/2} \sqrt{2\pi} \exp( (\frac{s+4}{2}-\frac{1}{2}) \log \frac{s+4}{2} - \frac{s+4}{2}) \sum_{n=1}^N \frac{\exp(\frac{t}{16} \log^2 \frac{s+4}{2\pi n^2})}{n^s} }[/math]
- [math]\displaystyle{ B' := \frac{2}{8} \pi^{-(1-s)/2} \sqrt{2\pi} \exp( (\frac{5-s}{2}-\frac{1}{2}) \log \frac{5-s}{2} - \frac{5-s}{2}) \sum_{n=1}^N \frac{\exp(\frac{t}{16} \log^2 \frac{5-s}{2\pi n^2})}{n^{1-s}} }[/math]
- [math]\displaystyle{ B'_0 := \frac{2}{8} \pi^{-(1-s)/2} \sqrt{2\pi} \exp( (\frac{5-s}{2}-\frac{1}{2}) \log \frac{5-s}{2} - \frac{5-s}{2}) \exp( \frac{t}{16} \log^2 \frac{5-s}{2\pi} ) }[/math]
- [math]\displaystyle{ s := \frac{1-y+ix}{2} }[/math]
- [math]\displaystyle{ N := \lfloor \sqrt{\frac{\mathrm{Im} s}{2\pi}} \rfloor = \lfloor \sqrt{\frac{x}{4\pi}} \rfloor. }[/math]
In Effective bounds on H_t - second approach, a more refined approximation [math]\displaystyle{ A^{eff} + B^{eff} }[/math] was introduced:
- [math]\displaystyle{ A^{eff} := \frac{1}{8} \exp( \frac{t}{4} \alpha_1(\frac{1-y+ix}{2})^2 ) H_{0,1}(\frac{1-y+ix}{2}) \sum_{n=1}^N \frac{1}{n^{\frac{1-y+ix}{2} + \frac{t \alpha_1(\frac{1-y+ix}{2})}{2} - \frac{t}{4} \log n}} }[/math]
- [math]\displaystyle{ B^{eff} := \frac{1}{8} \exp( \frac{t}{4} \overline{\alpha_1(\frac{1+y+ix}{2})}^2 ) \overline{H_{0,1}(\frac{1+y+ix}{2})} \sum_{n=1}^N \frac{1}{n^{\frac{1+y-ix}{2} + \frac{t \overline{\alpha_1(\frac{1+y+ix}{2})}}{2} - \frac{t}{4} \log n}} }[/math]
- [math]\displaystyle{ B^{eff}_0 := \frac{1}{8} \exp( \frac{t}{4} \overline{\alpha_1(\frac{1+y+ix}{2})}^2 ) \overline{H_{0,1}(\frac{1+y+ix}{2})} }[/math]
- [math]\displaystyle{ H_{0,1}(s) := \frac{s (s-1)}{2} \pi^{-s/2} \sqrt{2\pi} \exp( (\frac{s}{2} - \frac{1}{2}) \log \frac{s}{2} - \frac{s}{2} ) }[/math]
- [math]\displaystyle{ \alpha_1(s) := \frac{1}{2s} + \frac{1}{s-1} + \frac{1}{2} \log \frac{s}{2\pi} }[/math]
- [math]\displaystyle{ N := \lfloor \sqrt{ \frac{T'}{2\pi}} \rfloor }[/math]
- [math]\displaystyle{ T' := \frac{x}{2} + \frac{\pi t}{8}. }[/math]
There is a refinement [math]\displaystyle{ A^{eff}+B^{eff}-C^{eff} }[/math], where
- [math]\displaystyle{ C^{eff} := \frac{1}{8} \exp( \frac{t\pi^2}{64}) \frac{s'(s'-1)}{2} (-1)^N ( \pi^{-s'/2} \Gamma(s'/2) a^{-\sigma} C_0(p) U + \pi^{-(1-s')/2} \Gamma((1-s')/2) a^{-(1-\sigma)} \overline{C_0(p)} \overline{U}) }[/math]
- [math]\displaystyle{ s' := \frac{1-y}{2} + iT' = \frac{1-y+ix}{2} + \frac{\pi i t}{8} }[/math]
- [math]\displaystyle{ a := \sqrt{\frac{T'}{2\pi}} }[/math]
- [math]\displaystyle{ p := 1 - 2(a-N) }[/math]
- [math]\displaystyle{ \sigma := \mathrm{Re} s' = \frac{1-y}{2} }[/math]
- [math]\displaystyle{ U := \exp( -i (\frac{T'}{2} \log \frac{T'}{2\pi} - \frac{T'}{2} - \frac{\pi}{8} )) }[/math]
- [math]\displaystyle{ C_0(p) := \frac{ \exp( \pi i (p^2/2 + 3/8) )- i \sqrt{2} \cos(\pi p/2)}{2 \cos(\pi p)}. }[/math]
Finally, a simplified approximation is [math]\displaystyle{ A^{toy} + B^{toy} }[/math], where
- [math]\displaystyle{ A^{toy} := B^{toy}_0 \exp(i ((\frac{x}{2} + \frac{\pi t}{8}) \log \frac{x}{4\pi} - \frac{x}{2} - \frac{\pi}{4} )) N^{-y} \sum_{n=1}^N \frac{1}{n^{\frac{1-y+ix}{2} + \frac{t}{4} \log \frac{N^2}{n} + \pi i t/8}} }[/math]
- [math]\displaystyle{ B^{toy} := B^{toy}_0 \sum_{n=1}^N \frac{1}{n^{\frac{1+y-ix}{2} + \frac{t}{4} \log \frac{N^2}{n} - \pi i t/8}} }[/math]
- [math]\displaystyle{ B^{toy}_0 := \frac{\sqrt{2}}{4} \pi^2 N^{\frac{7+y}{2}} \exp( i (-\frac{x}{4} \log \frac{x}{4\pi} + \frac{x}{4} + \frac{9-y}{8} \pi) + \frac{t}{16} (\log \frac{x}{4\pi} - \frac{\pi i}{2})^2 ) e^{-\pi x/8} }[/math]
- [math]\displaystyle{ N := \lfloor \sqrt{\frac{x}{4\pi}} \rfloor. }[/math]
Here is a table comparing the size of the various main terms:
[math]\displaystyle{ x }[/math]
|
[math]\displaystyle{ B_0 }[/math]
|
[math]\displaystyle{ B'_0 }[/math]
|
[math]\displaystyle{ B^{eff}_0 }[/math]
|
[math]\displaystyle{ B^{toy}_0 }[/math]
|
[math]\displaystyle{ 10^3 }[/math]
|
[math]\displaystyle{ (3.4405 + 3.5443 i) \times 10^{-167} }[/math]
|
[math]\displaystyle{ (3.4204 + 3.5383 i) \times 10^{-167} }[/math]
|
[math]\displaystyle{ (3.4426 + 3.5411 i) \times 10^{-167} }[/math]
|
[math]\displaystyle{ (2.3040 + 2.3606 i) \times 10^{-167} }[/math]
|
[math]\displaystyle{ 10^4 }[/math]
|
[math]\displaystyle{ (-1.1843 - 7.7882 i) \times 10^{-1700} }[/math]
|
[math]\displaystyle{ (-1.1180 - 7.7888 i) \times 10^{-1700} }[/math]
|
[math]\displaystyle{ (-1.1185 - 7.7879 i) \times 10^{-1700} }[/math]
|
[math]\displaystyle{ (-1.1155 - 7.5753 i) \times 10^{-1700} }[/math]
|
[math]\displaystyle{ 10^5 }[/math]
|
[math]\displaystyle{ (-7.6133 + 2.5065 i) * 10^{-17047} }[/math]
|
[math]\displaystyle{ (-7.6134 + 2.5060 i) * 10^{-17047} }[/math]
|
[math]\displaystyle{ (-7.6134 + 2.5059 i) * 10^{-17047} }[/math]
|
[math]\displaystyle{ (-7.5483 + 2.4848 i) * 10^{-17047} }[/math]
|
[math]\displaystyle{ 10^6 }[/math]
|
[math]\displaystyle{ (-3.1615 - 7.7093 i) * 10^{-170537} }[/math]
|
[math]\displaystyle{ (-3.1676 - 7.7063 i) * 10^{-170537} }[/math]
|
[math]\displaystyle{ (-3.1646 - 7.7079 i) * 10^{-170537} }[/math]
|
[math]\displaystyle{ (-3.1590 - 7.6898 i) * 10^{-170537} }[/math]
|
[math]\displaystyle{ 10^7 }[/math]
|
[math]\displaystyle{ (2.1676 - 9.6330 i) * 10^{-1705458} }[/math]
|
[math]\displaystyle{ (2.1711 - 9.6236 i) * 10^{-1705458} }[/math]
|
[math]\displaystyle{ (2.1571 - 9.6329 i) * 10^{-1705458} }[/math]
|
[math]\displaystyle{ (2.2566 - 9.6000 i) * 10^{-1705458} }[/math]
|
Here some typical values of [math]\displaystyle{ B/B_0 }[/math] (note that [math]\displaystyle{ B/B_0 }[/math] and [math]\displaystyle{ B'/B'_0 }[/math] are identical):
[math]\displaystyle{ x }[/math]
|
[math]\displaystyle{ B/B_0 }[/math]
|
[math]\displaystyle{ B'/B'_0 }[/math]
|
[math]\displaystyle{ B^{eff}/B^{eff}_0 }[/math]
|
[math]\displaystyle{ B^{toy}/B^{toy}_0 }[/math]
|
[math]\displaystyle{ 10^3 }[/math]
|
[math]\displaystyle{ 0.7722 + 0.6102 i }[/math]
|
[math]\displaystyle{ 0.7722 + 0.6102 i }[/math]
|
[math]\displaystyle{ 0.7733 + 0.6101 i }[/math]
|
[math]\displaystyle{ 0.7626 + 0.6192 i }[/math]
|
[math]\displaystyle{ 10^4 }[/math]
|
[math]\displaystyle{ 0.7434 - 0.0126 i }[/math]
|
[math]\displaystyle{ 0.7434 - 0.0126 i }[/math]
|
[math]\displaystyle{ 0.7434 - 0.0126 i }[/math]
|
[math]\displaystyle{ 0.7434 - 0.0124 i }[/math]
|
[math]\displaystyle{ 10^5 }[/math]
|
[math]\displaystyle{ 1.1218 - 0.3211 i }[/math]
|
[math]\displaystyle{ 1.1218 - 0.3211 i }[/math]
|
[math]\displaystyle{ 1.1218 - 0.3211 i }[/math]
|
[math]\displaystyle{ 1.1219 - 0.3213 i }[/math]
|
[math]\displaystyle{ 10^6 }[/math]
|
[math]\displaystyle{ 1.3956 - 0.5682 i }[/math]
|
[math]\displaystyle{ 1.3956 - 0.5682 i }[/math]
|
[math]\displaystyle{ 1.3955 - 0.5682 i }[/math]
|
[math]\displaystyle{ 1.3956 - 0.5683 i }[/math]
|
[math]\displaystyle{ 10^7 }[/math]
|
[math]\displaystyle{ 1.6400 + 0.0198 i }[/math]
|
[math]\displaystyle{ 1.6400 + 0.0198 i }[/math]
|
[math]\displaystyle{ 1.6401 + 0.0198 i }[/math]
|
[math]\displaystyle{ 1.6400 - 0.0198 i }[/math]
|
Here some typical values of [math]\displaystyle{ A/B_0 }[/math], which seems to be about an order of magnitude smaller than [math]\displaystyle{ B/B_0 }[/math] in many cases:
[math]\displaystyle{ x }[/math]
|
[math]\displaystyle{ A/B_0 }[/math]
|
[math]\displaystyle{ A'/B'_0 }[/math]
|
[math]\displaystyle{ A^{eff}/B^{eff}_0 }[/math]
|
[math]\displaystyle{ A^{toy}/B^{toy}_0 }[/math]
|
[math]\displaystyle{ 10^3 }[/math]
|
[math]\displaystyle{ -0.3856 - 0.0997 i }[/math]
|
[math]\displaystyle{ -0.3857 - 0.0953 i }[/math]
|
[math]\displaystyle{ -0.3854 - 0.1002 i }[/math]
|
[math]\displaystyle{ -0.4036 - 0.0968 i }[/math]
|
[math]\displaystyle{ 10^4 }[/math]
|
[math]\displaystyle{ -0.2199 - 0.0034 i }[/math]
|
[math]\displaystyle{ -0.2199 - 0.0036 i }[/math]
|
[math]\displaystyle{ -0.2199 - 0.0033 i }[/math]
|
[math]\displaystyle{ -0.2208 - 0.0033 i }[/math]
|
[math]\displaystyle{ 10^5 }[/math]
|
[math]\displaystyle{ 0.1543 + 0.1660 i }[/math]
|
[math]\displaystyle{ 0.1543 + 0.1660 i }[/math]
|
[math]\displaystyle{ 0.1543 + 0.1660 i }[/math]
|
[math]\displaystyle{ 0.1544 + 0.1663 i }[/math]
|
[math]\displaystyle{ 10^6 }[/math]
|
[math]\displaystyle{ -0.1013 - 0.1887 i }[/math]
|
[math]\displaystyle{ -0.1010 - 0.1889 i }[/math]
|
[math]\displaystyle{ -0.1011 - 0.1890 i }[/math]
|
[math]\displaystyle{ -0.1012 - 0.1888 i }[/math]
|
[math]\displaystyle{ 10^7 }[/math]
|
[math]\displaystyle{ -0.1018 + 0.1135 i }[/math]
|
[math]\displaystyle{ -0.1022 + 0.1133 i }[/math]
|
[math]\displaystyle{ -0.1025 + 0.1128 i }[/math]
|
[math]\displaystyle{ -0.0986 + 0.1163 i }[/math]
|
Here some typical values of [math]\displaystyle{ C/B_0 }[/math], which is significantly smaller than either [math]\displaystyle{ A/B_0 }[/math] or [math]\displaystyle{ B/B_0 }[/math]:
[math]\displaystyle{ x }[/math]
|
[math]\displaystyle{ C/B_0 }[/math]
|
[math]\displaystyle{ C^{eff}/B^{eff}_0 }[/math]
|
[math]\displaystyle{ 10^3 }[/math]
|
[math]\displaystyle{ -0.1183 + 0.0697i }[/math]
|
[math]\displaystyle{ -0.0581 + 0.0823
i }[/math]
|
[math]\displaystyle{ 10^4 }[/math]
|
[math]\displaystyle{ -0.0001 - 0.0184 i }[/math]
|
[math]\displaystyle{ -0.0001 - 0.0172 i }[/math]
|
[math]\displaystyle{ 10^5 }[/math]
|
[math]\displaystyle{ -0.0033 - 0.0005i }[/math]
|
[math]\displaystyle{ -0.0031 - 0.0005i }[/math]
|
[math]\displaystyle{ 10^6 }[/math]
|
[math]\displaystyle{ -0.0001 - 0.0006 i }[/math]
|
[math]\displaystyle{ -0.0001 - 0.0006 i }[/math]
|
[math]\displaystyle{ 10^7 }[/math]
|
[math]\displaystyle{ -0.0000 - 0.0001 i }[/math]
|
[math]\displaystyle{ -0.0000 - 0.0001 i }[/math]
|
Controlling |A+B|/|B_0|
See Controlling A+B/B_0.
Controlling |H_t-A-B|/|B_0|
See Controlling H_t-A-B/B_0.