Different upper and lower bound: Difference between revisions
m →Status |
Added question on primality of N(1,b) |
||
Line 14: | Line 14: | ||
<math>N(1,b)<\infty</math> ([http://www.dpmms.cam.ac.uk/~ardm/erdoschu.pdf On a conjecture of Erdős and Čudakov]) | <math>N(1,b)<\infty</math> ([http://www.dpmms.cam.ac.uk/~ardm/erdoschu.pdf On a conjecture of Erdős and Čudakov]) | ||
Question: is <math>N(1,b)</math> always prime? | |||
<math>N(2, 2) \geq 1124</math> (e.g [[the first 1124-sequence]]) | <math>N(2, 2) \geq 1124</math> (e.g [[the first 1124-sequence]]) | ||
For the zero-based problem, see [http://gowers.wordpress.com/2010/01/06/erdss-discrepancy-problem-as-a-forthcoming-polymath-project/#comment-4822 this | For the zero-based problem, see [http://gowers.wordpress.com/2010/01/06/erdss-discrepancy-problem-as-a-forthcoming-polymath-project/#comment-4822 this comment] | ||
==Method== | ==Method== | ||
Line 63: | Line 65: | ||
--[[User:Alec|Alec]] 13:46, 9 January 2010 (UTC) | --[[User:Alec|Alec]] 13:46, 9 January 2010 (UTC) | ||
==Relevant code== | ==Relevant code== | ||
The code(s) (or a link to the code(s)) used to find this sequence should be posted here. | The code(s) (or a link to the code(s)) used to find this sequence should be posted here. |
Revision as of 01:02, 10 January 2010
If [math]\displaystyle{ N(a,b) }[/math] is the maximum length of a [math]\displaystyle{ \pm 1 }[/math] sequence with the partial sums along its HAPs bounded below by [math]\displaystyle{ -a }[/math] and above by [math]\displaystyle{ b }[/math], then:
[math]\displaystyle{ N(a, b) = N(b, a) }[/math]
[math]\displaystyle{ N(0, b) = b }[/math] (everything must be [math]\displaystyle{ +1 }[/math])
[math]\displaystyle{ N(1, 1) = 11 }[/math] (there are [math]\displaystyle{ 4 }[/math] such sequences: choose [math]\displaystyle{ x_1 }[/math], and use the constraints [math]\displaystyle{ x_n +x_{2n} = 0 }[/math] and [math]\displaystyle{ x_1 + \ldots + x_{2n} = 0 }[/math] to determine the entries up to [math]\displaystyle{ 10 }[/math]; then choose [math]\displaystyle{ x_{11} }[/math])
[math]\displaystyle{ N(1, 2) = 41 }[/math] (there are [math]\displaystyle{ 4 }[/math] such sequences -- example below)
[math]\displaystyle{ N(1, 3) = 83 }[/math] (there are [math]\displaystyle{ 216 }[/math] such sequences -- example below)
[math]\displaystyle{ N(1, 4) = 131 }[/math] (there are [math]\displaystyle{ 87144 }[/math] such sequences -- example below)
[math]\displaystyle{ N(1,b)\lt \infty }[/math] (On a conjecture of Erdős and Čudakov)
Question: is [math]\displaystyle{ N(1,b) }[/math] always prime?
[math]\displaystyle{ N(2, 2) \geq 1124 }[/math] (e.g the first 1124-sequence)
For the zero-based problem, see this comment
Method
Here should be a short description of the way the sequences was found. (The code(s) used should be further down this page.)
Status
Is the data still relevant (e.g. longest know)? Is the method still relevant, or have we found a better method? Is the program still running on a computer somewhere?
The data
[math]\displaystyle{ N(1, 2) = 41 }[/math] (there are [math]\displaystyle{ 4 }[/math] such sequences -- example below)
0 + - - + - + + - + + - - + - + + - + - - - + - + + - - + + - + - + + - - - + - + +
[math]\displaystyle{ N(1, 3) = 83 }[/math] (there are [math]\displaystyle{ 216 }[/math] such sequences -- example below)
0 - + - + - + + - + + - - + - + + - - + - - + - + + - + + + - - - + + - + + - - + - + - - + + - - + - + + + - + - - - + + - + - + - - + - + + - + + - - + - + - - - + +
[math]\displaystyle{ N(1, 4) = 131 }[/math] (there are [math]\displaystyle{ 87144 }[/math] such sequences -- example below)
0 + - - + - + + - - + - + + - + + + + - - - + - - + - + + - - + + + - - - + + - + - + - - + + - + + - - + - - + - + + + + - - + - + - - + + + - + - - - - + + - - - + + - - + + + + - - - - + + - + - + + + + - - + + - + - - - + + - - - + - - + + + - + + - - + - - +
[math]\displaystyle{ N(2, 2) \geq 1124 }[/math]
--Alec 13:46, 9 January 2010 (UTC)
Relevant code
The code(s) (or a link to the code(s)) used to find this sequence should be posted here.